Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T06:25:58.886Z Has data issue: false hasContentIssue false

Binary collisions of drops of immiscible liquids

Published online by Cambridge University Press:  01 December 2011

Ilia V. Roisman*
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Center of Smart Interfaces, Technische Universität Darmstadt, Petersenstrasse. 30, 64287 Darmstadt, Germany
Carole Planchette
Affiliation:
Laboratoire de Physique des Matériaux Divisés et des Interfaces, FRE 3300 CNRS, Université Paris-Est, 5 boulevard Descartes, 77454 Marne-la-Vallée CEDEX 2, France
Elise Lorenceau
Affiliation:
Laboratoire de Physique des Matériaux Divisés et des Interfaces, FRE 3300 CNRS, Université Paris-Est, 5 boulevard Descartes, 77454 Marne-la-Vallée CEDEX 2, France
Günter Brenn
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Technische Universität Graz, Inffeldgasse 25/F, 8010 Graz, Austria
*
Email address for correspondence: [email protected]

Abstract

This experimental and theoretical study is devoted to the investigation of head-on collisions of two drops of immiscible liquids. In the experiments, pairs of drops are made to collide at well-defined kinetic and geometric conditions. The sizes and relative velocity of the colliding drops close to the point of impact are measured by means of image processing. The deformed states after the impact, their evolution with time, and their stability are studied by visualization. The theory considers the dynamics of the rim formed at the edge of a radially spreading lamella due to capillary forces at the free surfaces of the lamella and at the liquid/liquid interface. The equations of the rim formation and motion are obtained from the volume, mass and momentum balance equations which account for the inertial, viscous and capillary effects. The theory predicts the evolution of the main geometrical parameters of the liquid mass formed by the drop collision: thickness of the lamella, diameter, and size of the rim cross-section. The theoretical predictions agree well with the experimental data, although no adjustable parameters are used in the model.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ashgriz, N. & Poo, J. Y. 1990 Coalescence and separation in binary collisions of liquid drops. J. Fluid Mech. 221, 183204.CrossRefGoogle Scholar
2. Bakshi, S., Roisman, I. V. & Tropea, C. 2007 Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19, 032102.CrossRefGoogle Scholar
3. Brazier-Smith, P. R., Jennings, S. G. & Latham, J. 1972 The interaction of falling water drops: coalescence. Proc. R. Soc. Lond. A 326, 393408.Google Scholar
4. Brenn, G., Tropea, C. & Durst, F. 1996 Monodisperse sprays for various purposes – their production and characteristics. Part. Part. Syst. Charact. 13, 179185.CrossRefGoogle Scholar
5. Brenn, G., Valkovska, D. & Danov, K. D. 2001 The formation of satellite droplets by unstable binary drop collisions. Phys. Fluids 13, 24632477.CrossRefGoogle Scholar
6. Chen, R.-H. 2007 Diesel–diesel and diesel–ethanol drop collisions. Appl. Therm. Engng 27, 604610.CrossRefGoogle Scholar
7. Chen, R.-H. & Chen, C.-T. 2006 Collision between immiscible drops with large surface tension difference: diesel oil and water. Exp. Fluids 41, 453461.CrossRefGoogle Scholar
8. Dupré, A. 1867 Theorie mécanique de la Chaleur. Ann. Chim. Phys. 4 (11), 194220.Google Scholar
9. Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
10. Fukai, J., Shiiba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C. M. & Zhao, Z. 1995 Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modelling. Phys. Fluids 7, 236247.CrossRefGoogle Scholar
11. Gao, T.-C., Chen, R.-H., Pu, J.-Y. & Lin, T.-H. 2005 Collision between an ethanol drop and a water drop. Exp. Fluids 38, 731738.CrossRefGoogle Scholar
12. Gotaas, C., Havelka, P., Jakobsen, H. A., Svendsen, H. F., Hase, M., Roth, N. & Weigand, B. 2007 Effect of viscosity on droplet–droplet collision outcome: experimental study and numerical comparison. Phys. Fluids 19, 102106.CrossRefGoogle Scholar
13. Inamuro, T., Ogata, T., Tajima, S. & Konishi, N. 2004 A lattice Boltzmann method for incompressible two-phase flows with large density differences. J. Comput. Phys. 198, 628644.CrossRefGoogle Scholar
14. Jiang, Y. J., Umemura, A. & Law, C. K. 1992 An experimental investigation on the collision behaviour of hydrocarbon droplets. J. Fluid Mech. 234, 171190.CrossRefGoogle Scholar
15. Ko, G. H. & Ryou, H. S. 2005 Modelling of droplet collision-induced breakup process. Intl J. Multiphase Flow 31, 723738.CrossRefGoogle Scholar
16. Munnannur, A. & Reitz, R. D. 2007 A new predictive model fdor fragmenting and non-fragmenting binary droplet collisions. Intl J. Multiphase Flow 33, 873896.CrossRefGoogle Scholar
17. Orme, M. 1997 Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy Combust. Sci. 23, 6579.CrossRefGoogle Scholar
18. Pan, K.-L. & Roisman, I. V. 2009 Note on ‘Dynamics of inertia dominated binary drop collisions,’ (Phys. of Fluids 16, 3438 (2004)). Phys. Fluids 21, 022101.CrossRefGoogle Scholar
19. Pan, K.-L., Chou, P.-C. & Tseng, Y.-J. 2009 Binary droplet collision at high weber number. Phys. Rev. E 80, 036301.CrossRefGoogle ScholarPubMed
20. Pan, K.-L., Law, C. K. & Zhou, B. 2008 Experimental and mechanistic description of merging and bouncing in head-on binary droplet collision. J. Appl. Phys. 103, 064901.CrossRefGoogle Scholar
21. Pan, Y. & Suga, K. 2005 Numerical simulation of binary liquid droplet collision. Phys. Fluids 17, 082105.CrossRefGoogle Scholar
22. Planchette, C., Lorenceau, E. & Brenn, G. 2009 Liquid encapsulation by binary collisions of immiscible liquid drops. Colloids Surf. A: Physicochem. Engng. Aspects 365, 8994.CrossRefGoogle Scholar
23. Qian, J. & Law, C. K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331, 5980.CrossRefGoogle Scholar
24. Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112124.CrossRefGoogle Scholar
25. Roisman, I. V. 2004 Dynamics of inertia dominated binary drop collisions. Phys. Fluids 16, 34383449.CrossRefGoogle Scholar
26. Roisman, I. V. 2009 Inertia dominated drop collisions II: an analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21, 052104.CrossRefGoogle Scholar
27. Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions I: on the universal flow in the lamella. Phys. Fluids 21, 052103.CrossRefGoogle Scholar
28. Sun, Z., Xi, G. & Chen, X. 2009 Mechanism study of deformation and mass transfer for binary droplet collisions with particle method. Phys. Fluids 21, 032106.CrossRefGoogle Scholar
29. Taylor, G. I. 1959 The dynamics of thin sheets of fluid II. Waves on fluid sheets. Proc. R. Soc. Lond. A 263, 296312.Google Scholar
30. van Hinsberg, N. P., Budakli, M., Berberovic, E., Roisman, I. V., Gambaryan-Roisman, T., Tropea, C. & Stephan, P. 2010 Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses. J. Colloid Interface Sci. 350, 336343.CrossRefGoogle ScholarPubMed
31. Willis, K. & Orme, M. 2000 Viscous oil droplet collisions in a vacuum. Exp. Fluids 29, 347.CrossRefGoogle Scholar
32. Willis, K. & Orme, M. 2003 Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Exp. Fluids 34, 28.CrossRefGoogle Scholar
33. Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.CrossRefGoogle ScholarPubMed
34. Yarin, A. L. 1993 Free Liquid Jets and Films: Hydrodynamics and Rheology. Longman & Wiley.Google Scholar
35. Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.CrossRefGoogle Scholar