Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:29:34.975Z Has data issue: false hasContentIssue false

Analysis of the dripping–jetting transition in compound capillary jets

Published online by Cambridge University Press:  13 April 2010

M. A. HERRADA
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
J. M. MONTANERO
Affiliation:
Departamento de Ingeniería Mecánica, Energética y de los Materiales, Universidad de Extremadura, E-06071 Badajoz, Spain
C. FERRERA
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
A. M. GAÑÁN-CALVO*
Affiliation:
Departamento de Ingeniería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, E-41092 Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

We examine the behaviour of a compound capillary jet from the spatio-temporal linear stability analysis of the Navier–Stokes equations. We map the jetting–dripping transition in the parameter space by calculating the Weber numbers for which the convective/absolute instability transition occurs. If the remaining dimensionless parameters are set, there are two critical Weber numbers that verify Brigg's pinch criterion. The region of absolute (convective) instability corresponds to Weber numbers smaller (larger) than the highest value of those two Weber numbers. The stability map is affected significantly by the presence of the outer interface, especially for compound jets with highly viscous cores, in which the outer interface may play an important role even though it is located very far from the core. Full numerical simulations of the Navier–Stokes equations confirm the predictions of the stability analysis.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barrero, A. & Loscertales, I. G. 2007 Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89106.CrossRefGoogle Scholar
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.CrossRefGoogle Scholar
Bocanegra, R., Sampedro, J. L., Gañán-Calvo, A. M. & Marquez, M. 2005 Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. J. Microencapsul. 22, 745759.Google Scholar
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.CrossRefGoogle Scholar
Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2000 Temporal instability of compound threads and jets. J. Fluid Mech. 420, 125.Google Scholar
Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2006 The absolute instability of an inviscid compound jet. J. Fluid Mech. 549, 8198.Google Scholar
Christopher, G. F. & Anna, S. L. 2007 Microfluidic methods for generating continuous droplet streams. J. Phys. D: Appl. Phys. 40, R319R336.Google Scholar
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.CrossRefGoogle ScholarPubMed
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2005 On compound liquid threads with large viscosity contrasts. J. Fluid Mech. 533, 95124.Google Scholar
Funada, T., Joseph, D. D. & Yamashita, S. 2004 Stability of a liquid jet into incompressible gases and liquids. Intl J. Multiphase Flow 30, 12791310.Google Scholar
Gañán-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.CrossRefGoogle Scholar
Gañán-Calvo, A. M. 2008 Unconditional jetting. Phys. Rev. E 78, 026304.Google Scholar
Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A. & Flores-Mosquera, M. 2007 Focusing capillary jets close to the continuum limit. Nature Phys. 3, 737742.CrossRefGoogle Scholar
Gañán-Calvo, A. M., Herrada, M. A. & Garstecki, P. 2006 Bubbling in unbounded coflowing liquids. Phys. Rev. Lett. 96, 124504 (1–4).Google Scholar
Gañán-Calvo, A. M. & Montanero, J. M. 2009 Revision of capillary cone-jet physics: electrospray and flow focusing. Phys. Rev. E 79, 066305 (1–18).CrossRefGoogle ScholarPubMed
Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.Google Scholar
He, Y. 2008 Application of flow-focusing to the breakup of an emulsion jet for the production of matrix-structured microparticles. Chem. Engng Sci. 63, 25002507.Google Scholar
Healey, J. J. 2007 Enhancing the absolute instability of a boundary layer by adding a far-way plate. J. Fluid Mech. 579, 2961.Google Scholar
Healey, J. J. 2008 Inviscid axisymmetric absolute instability of swirling jets. J. Fluid Mech. 613, 133.CrossRefGoogle Scholar
Healey, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241271.CrossRefGoogle Scholar
Herrada, M. A., Gañán-Calvo, A. M., Ojeda-Monge, A., Bluth, B. & Riesco-Chueca, P. 2008 Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys. Rev. E 78, 036323 (1–16).Google Scholar
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.CrossRefGoogle Scholar
Juniper, M. P. 2007 The full response of two-dimensional jet/wake flows and implications for confinement. J. Fluid Mech. 590, 163185.CrossRefGoogle Scholar
Khorrami, M. R. 1991 A Chebyshev spectral collocation method using a staggered grid for the stability of cylindrical flows. Intl J. Numer. Methods Fluids 12, 825833.Google Scholar
Leib, S. J. & Goldstein, M. E. 1986 The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.Google Scholar
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Gañán-Calvo, A. M. 2002 Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 16951698.Google Scholar
Montanero, J. M. & Gañán-Calvo, A. M. 2008 Stability of coflowing capillary jets under nonaxisymmetric perturbations. Phys. Rev. E 77, 046301.CrossRefGoogle ScholarPubMed
Sanz, A. & Masseguer, J. 1985 One-dimensional linear analysis of the compound jet. J. Fluid Mech. 159, 5568.Google Scholar
Si, T., Li, F., Yin, X. & Yin, X. 2009 Modes in flow focusing and instability of coaxial liquid–gas jets. J. Fluid Mech. 629, 123.CrossRefGoogle Scholar
Stone, H. A., Stroock, A. D. & Adjari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.Google Scholar
Suryo, R., Doshi, P. & Basaran, A. 2006 Nonlinear dynamics and breakup of compound jets. Phys. Fluids 18, 082107.Google Scholar
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. R. Soc. Lond. A 150, 322337.Google Scholar
Umbanhowar, P. B., Prasad, V. & Weitz, D. A. 2000 Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347351.Google Scholar
Utada, A. S., Fernández-Nieves, A., Gordillo, J. M. & Weitz, D. A. 2008 Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100, 014502 (1–4).CrossRefGoogle Scholar
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D. Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.CrossRefGoogle ScholarPubMed