Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T14:18:26.666Z Has data issue: false hasContentIssue false

Modification of β–lactoglobulin by aliphatic aldehydes in aqueous solution

Published online by Cambridge University Press:  01 June 2009

Henrik Stapelfeldt
Affiliation:
KVL Centre for Food Research and Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
Leif H. Skibsted*
Affiliation:
KVL Centre for Food Research and Department of Dairy and Food Science, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
*
* For correspondance.

Summary

Each of the secondary lipid oxidation products pentanal, hexanal and heptanal was found to react with β–lactoglobulin (β–lg) in a two-phase model System (aqueous phosphate buffer–1-octanol) yielding fluorescent condensation products (emission maximum, 410 nm; excitation maximum, 350 nm). Protein polymers were detected by size-exclusion HPLC, and the rate of reaction paralleled the formation of fluorescent products, with the reactivity being pentanal > hexanal > heptanal. Simultaneously, the reaction also changed the intrinsic fluorescence of β–lg, and in particular pentanal reduced the intensity of tryptophan fluorescence (emission maximum, 332 nm; excitation maximum, 288 nm) by 30%. These findings are discussed with reference to the effect of peroxidizing lipids on the physical properties of whey proteins and the use of protein fluorescence (induced by the reaction with aldehydes) as marker for the oxidative status of milk and whey protein products.

Type
Original Articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bican, P. & Blanc, B. 1982 Milk protein analysis–a high-performance chromatography study. Milchwissenschaft 37 592593Google Scholar
Bouzas, J., Kamarei, A. R. & Karel, M. 1985 a Effect of extraction procedures on fluorescent chromophores in milk. Journal of Food Science 50 15151516CrossRefGoogle Scholar
Bouzas, J., Kamarei, A. R. & Karel, M. 1985 b Storage stability of milkfat globule membrane. Journal of Food Processing and Preservation 9 1124CrossRefGoogle Scholar
Brown, E. M., Pfeffer, P. E., Kumosinski, T. F. & Greenberg, R. 1988 Accessibility and mobility of lysine residues in β–lactoglobulin. Biochemistry 27 56015610CrossRefGoogle ScholarPubMed
Burstein, E. A., Vedenkina, N. S. & Ivkova, M. N. 1973 Fluorescence and the location of tryptophan residues in protein molecules. Photochemistry and Photobiology 18 263279CrossRefGoogle ScholarPubMed
Chio, K. S., Reiss, U., Fletcher, B. & Tappel, A. L. 1969 Peroxidation of subcellular organelles: formation of lipofuscinlike fluorescent pigments. Science 166 15351536Google Scholar
Creed, D. 1984 The photophysics and photochemistry of the near-uv absorbing amino acids I. Tryptophan and its simple derivatives. Photochemistry and Photobiology 39 537562Google Scholar
Davis, P. L. 1968 Determination of solubilities of C5–C9 aldehydes in water by gas chromatography. Journal of Gas Chromatography 6 518519Google Scholar
Diaz De Villegas, C., Oria, R., Sala, F. J. & Calvo, M. 1987 Lipid binding by β–lactoglobulin of cow milk. Milchwissenschaft 42 357358Google Scholar
Dillard, C. J. & Tappel, A. L. 1971 Fluorescent produets of lipid peroxidation of mitochondria and microsomes. Lipids 6 715721CrossRefGoogle Scholar
Esterbauer, H., Ertl, A. & Scholz, N. 1976 The reaction of cysteine with α, β–unsaturated aldehydes. Tetrahedron 32 285289CrossRefGoogle Scholar
Fugate, R. D. & Song, P.-S. 1980 Spectroscopic characterization of β–lactoglobulin-retinol complex. Biochimica et Biophysica Acta 625 2842CrossRefGoogle ScholarPubMed
Gray, J. I. 1978 Measurement of lipid oxidation: a review. Journal of the American Oil Chemists' Society 55 539546CrossRefGoogle Scholar
Guthrie, F. E. & Hodgson, E. 1987 Absorption and distribution of toxicants. In A Textbook of Modern Toxicology, pp. 2350 (Eds Hodgson, E. and Levi, P. E.). New York: ElsevierGoogle Scholar
Hall, G. & Andersson, J. 1985 Flavor changes in whole milk powder during storage. III. Relationships between flavor properties and volatile compounds. Journal of Food Quality 7 237253Google Scholar
Hidalgo, F. J. & Kinsella, J. E. 1989 Changes induced in β–lactoglobulin B following interactions with linoleic acid 13-hydroperoxide. Journal of Agricultural and Food Chemistry 37 860866Google Scholar
Kikugawa, K., Iwata, A. & Beppu, M. 1988 Formation of cross-links and fluorescence in polylysine, soluble proteins and membrane proteins by reaction with 1-butanal. Chemical and Pharmaceutical Bulletin 36 685692CrossRefGoogle ScholarPubMed
Kikugawa, K., Kato, T. & Iwata, A. 1989 a A tetrameric dialdehyde formed in the reaction of butyraldehyde and benzylamine: a possible intermediary component for protein cross-linking induced by lipid oxidation. Lipids 24 962968Google Scholar
Kikugawa, K., Kato, T., Iwata, A. & Hayasaka, A. 1989 b Formation of fluorescent products in the reaction of butyraldehyde and methylamine as a model of the reaction of oxidized lipids and proteins. Chemical and Pharmaceutical Bulletin 37 30613065CrossRefGoogle Scholar
Lakowicz, J. R. 1983 Principles of Fluorescence Spectroscopy. New York: Plenum PressGoogle Scholar
Monaco, H. L., Zanotti, G., Spadon, P., Bolognesi, M., Sawyer, L. & Eliopoulos, E. E. 1987 Crystal structure of the trigonal form of bovine beta-lactoglobulin and of its complex with retinol at 2·5 Å resolution. Journal of Molecular Biology 197 695706CrossRefGoogle ScholarPubMed
Monti, J. C., Fumeaux, D., Barrois-Larouzé, V. & Jollès, P. 1984 Relative distribution of human milk whey proteins in normal and abnormal samples: an approach by high performance liquid chromatography. Milchwissenschaft 39 219221Google Scholar
Papiz, M. Z., Sawyer, L., Eliopoulos, E. E., North, A. C. T., Findlay, J. B. C., Sivaprasadarao, R., Jones, T. A., Newcomer, M. E. & Kraulis, P. J. 1986 The structure of β–lactoglobulin and its similarity to plasma retinol-binding protein. Nature 324 383385CrossRefGoogle ScholarPubMed
Parker, C. A. 1968 Photoluminescence of Solutions. Amsterdam: ElsevierGoogle Scholar
Pearce, K. N. & Kinsella, J. E. 1978 Emulsifying properties of proteins: evaluation of a turbidimetric technique. Journal of Agricultural and Food Chemistry 26 716723CrossRefGoogle Scholar
Pérez, M. D., Díaz De Villegas, C., Sánchez, L., Aranda, P., Ena, J. M. & Calvo, M. 1989 Interaction of fatty acids with β–lactoglobulin and albumin from ruminant milk. Journal of Biochemistry 106 10941097CrossRefGoogle ScholarPubMed
Piez, K. A., Davie, E. W., Folk, J. E. & Gladner, J. A. 1961 β–Lactoglobulins A and B. 1. Chromatographic separation and amino acid composition. Journal of Biological Chemistry 236 29122916Google Scholar
Ralston, G. B. 1972 The decrease in stability of β–lactoglobulin on blocking the sulphydryl group. Comptes Rendus des Travaux du Laboratoire Carlsberg 38 499512Google Scholar
Tashiro, Y., Okitani, A.Utsunomiya, N., Kaneko, S. & Kato, H. 1985 Changes in lysozyme due to interaction with vaporized hexanal. Agricultural and Biological Chemistry 49 17391747Google Scholar
Tsuchida, M., Miura, T., Mizutani, K. & Aibara, K. 1985 Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation. Biochimica et Biophysica Acta 834 196204Google Scholar
Weist, J. & Karel, M. 1992 Development of a fluorescence sensor to monitor lipid oxidation. II. The kinetics of chitosan fluorescence formation after exposure to lipid oxidation products. Food Biotechnology 6 273293CrossRefGoogle Scholar
Wetlaufer, D. B. 1962 Ultraviolet spectra of proteins and amino acids. Advances in Protein Chemistry 17 303390Google Scholar
Yu, H.-T., Colucci, W. J., Mclauohlin, M. L. & Barkley, M. D. 1992 Fluorescence quenching in indoles by excited-state proton transfer. Journal of the American Chemical Society 114 84498454CrossRefGoogle Scholar