Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T10:24:12.407Z Has data issue: false hasContentIssue false

Autoxidation in milk rich in linoleic acid: II. Modification of the initiation system and control of oxidation

Published online by Cambridge University Press:  01 June 2009

G. S. Sidhu
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., Sydney, Australia
M. A. Brown
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., Sydney, Australia
A. R. Johnson
Affiliation:
Division of Food Research, Food Research Laboratory, C.S.I.R.O., Sydney, Australia

Summary

Factors contributing to the initiation of lipid oxidation in cow's and mare's milk containing high levels of polyunsaturated fatty acids were studied. Addition of H2O2 just after milking, in slight excess of the stoichiometric amounts required to destroy ascorbic acid, delayed the development of oxidized flavours in cow's milk high in linoleic acid. Hydrogen peroxide treatment followed by the addition of α- or γ-tocopherols prevented lipid oxidation in cow's milk even when 0·1 mg Cu/l milk was added. When used separately in the presence of Cu these treatments were ineffective as was butylated hydroxyanisole treatment.

The lipid and ascorbic acid in mare's milk were remarkably stable to oxidation. Addition of 0·05 or 0·1 mg Cu/l, ethylenediamine tetraacetic acid, neocuproine, or H2O2 had very little effect on the loss of ascorbic acid and lipid oxidation in mare's milk.

Type
Research Article
Copyright
Copyright © Proprietors of Journal of Dairy Research 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Arrington, L. R. & Krienke, W. A. (1954). Journal of Dairy Science 37, 819.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1970). Official Methods of Analysis, 1970, 11th edn.The Association: Washington, D.C.Google Scholar
Bender, A. E. (1966). Journal of Food Technology 1, 261.CrossRefGoogle Scholar
Berlin, P. J. (1960). IX - DOC 9, International Dairy Federation, Vienna.Google Scholar
Cuq, J. L., Provansal, M., Guilleux, F. & Cheftel, C. (1973). Journal of Food Science 38, 11.CrossRefGoogle Scholar
Dunkley, W. L. & Franke, A. A. (1967). Journal of Dairy Science 50, 1.CrossRefGoogle Scholar
Edmondson, L. F., Douglas, F. W. Jr, Rainey, N. H. & Goering, H. K. (1972). Journal of Dairy Science 55, 677.Google Scholar
El-Negoumy, A. M. (1965). Journal of Dairy Science 48, 1406.CrossRefGoogle Scholar
El-Negoumy, A. M. & Ku, P. S. (1968). Journal of Dairy Research 35, 49.CrossRefGoogle Scholar
Haase, G. & Dunkley, W. L. (1969 a). Journal of Lipid Research 10, 555.CrossRefGoogle Scholar
Haase, G. & Dunkley, W. L. (1969 b). Journal of Lipid Research 10, 561.CrossRefGoogle Scholar
Haase, G. & Dunkley, W. L. (1969 c). Journal of Lipid Research 10, 568.CrossRefGoogle Scholar
Haase, G. & Dunkley, W. L. (1970). Milchwissenschaft 25, 656.Google Scholar
Hartman, G. H. & Garrett, O. F. (1943). Journal of Dairy Science 25, 722.Google Scholar
Kägi, J. H. R., Himmelhoch, S. R., Whanger, P. D., Bethune, J. L. & Vallee, B. L. (1974). Journal of Biological Chemistry 249, 3537.CrossRefGoogle Scholar
King, R. L. (1958). Thesis, University of California, U.S.A.Google Scholar
King, R. L. (1963). Journal of Dairy Science 46, 267.CrossRefGoogle Scholar
King, R. L. & Dunkley, W. L. (1959). Journal of Dairy Science 42, 897.Google Scholar
Kon, S. K. (1972). Milk and Milk Products in Human Nutrition. United Nations Food and Agriculture Organization Nutritional Studies 27, 2nd edn, 10.Google Scholar
Krukovsky, V. N. (1949). Journal of Dairy Science 32, 163.CrossRefGoogle Scholar
Krukovsky, V. N. (1961). Journal of Agricultural and Food Chemistry 9, 439.CrossRefGoogle Scholar
Labuza, T. P. (1971). CRC Critical Reviews in Food Technology 2, 355.CrossRefGoogle Scholar
Perlmutter, R. M. & Brunner, J. R. (1972). Journal of Dairy Science 55, 1064.CrossRefGoogle Scholar
Scott, T. W., Bready, P. J., Royal, A. J. & Cook, L. J. (1972). Search, Sydney 3, 170.Google Scholar
Scott, T. W., Cook, L. J., Ferguson, K. A., McDonald, I. W., Buchanan, R. A. & Hills, G. Loftus (1970). Australian Journal of Science 32, 291.Google Scholar
Scott, T. W., Cook, L. J. & Mills, S. C. (1971). Journal of American Oil Chemists Society 48, 358.CrossRefGoogle Scholar
Sharp, P. F. (1938). Journal of Dairy Science 21, 85.CrossRefGoogle Scholar
Sherman, H. C. (1952). Chemistry of Food and Nutrition, 8th edn p. 337. New York: MacMillan.Google ScholarPubMed
Sidhu, G. S., Brown, M. A. & Johnson, A. R. (1973 a). Proceedings of the Australian Biochemical Society 6, 26.Google Scholar
Sidhu, G. S., Brown, M. A. & Johnson, A. R. (1973 b). Journal of Dairy Science 56, 635.CrossRefGoogle Scholar
Sidhu, G. S., Brown, M. A. & Johnson, A. R. (1975). Journal of Dairy Research 42, 185.CrossRefGoogle Scholar
Smith, G. J. (1961). Thesis, University of California, U.S.A.Google Scholar
Smith, G. J. & Dunkley, W. L. (1962 a). Journal of Dairy Science 45, 170.CrossRefGoogle Scholar
Smith, G. J. & Dunkley, W. L. (1962 b). Journal of Food Science 27, 127.CrossRefGoogle Scholar
ter Huurne, B. H. (1974). Thesis, University of N.S.W., Australia.Google Scholar