Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T17:58:20.052Z Has data issue: false hasContentIssue false

Effects of kinetin on the growth and development of barley and its interaction with root size

Published online by Cambridge University Press:  27 March 2009

P. Ruckenbauer
Affiliation:
Plant Breeding Institute, Cambridge CB2 2LQ
E. J. M. Kirby
Affiliation:
Plant Breeding Institute, Cambridge CB2 2LQ

Summary

In some plants the roots have been shown to be major sites of cytokinin production. The part they play in controlling growth and development of cereals was studied by spraying barley with kinetin solution and by changing the size of the root system. Two varieties of barley were grown in culture solution and kinetin was applied and root sexcised at the second-, third- or fifth-leaf stage. The kinetin in aqueous solution was sprayed on the leaves, and either most of the root-tips, or an equivalent weight of entire root strands, were removed. Kinetin increased both shoot apex development and the final ear size. The weights of the main shoot and the whole plant also wore increased, particularly by the later treatments. Removing entire root strands decreased the whole plant dry weight more than removing most of the root apices, but the main shoot weight was less affected. Kinetin interacted with root removal, though neither the interaction nor the main effect of root removal showed unequivocally that cereal roots are the site of cytokinin synthesis, possibly because new root tips were regenerated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1973

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspinall, D. & Paleg, L. G. (1963). Effects of day length and light intensity on growth of barley. I. Growth and development of apex with a fluorescent light source. Bot. Gaz. 124, 429–37.CrossRefGoogle Scholar
Barnsley, G. E. (1964). N6-Benzyladenine as a senescence inhibitor. Ghent. Abstr. 61, 13, 816.Google Scholar
Crane, J. C. (1964). Growth substances in fruit setting and development A. Rev. Pl. Physiol. 15, 303326.Google Scholar
Engelbrecht, L. (1964). Über Kinetinwirkung bei intakten Blättern in Nicotiana rustica. Flora, Jena 154, 5769.Google Scholar
Fox, J. E. (1969). The cytokinins. In Physiology of Plant Growth and Development. Ed. Wilkins, M. B.. London: McGraw-Hill.Google Scholar
Humphries, E. C. (1958). The effect of the removal of the root system of barley on the production of ears. Ann. Bot. 22, 417–22.CrossRefGoogle Scholar
Itai, C. & Vaadia, Y. (1965). Kinetin-like activity in root edudate of water-stressed sunflower plants. Physiologia Pl 18, 941–44.CrossRefGoogle Scholar
Jevtic, S. (1968). The morpho-physiological properties of the root system of some high yielding wheat varieties. Savremena Poljoprivreda (Contemporary agriculture) 16, 557–65.Google Scholar
Kende, H. (1965). Kinetin-like factors in the root of sunflowers. Proc. natn. Acad. Sci. U.S.A. 53, 1302–7.CrossRefGoogle Scholar
Kopetz, L. M. & Steineck, O. (1962). Zur Frage der Untersuehung von Nährstoffwirkungen. Bodenkultur 13, 145–62.Google Scholar
Letham, D. S. (1963). Regulators of cell division in plant tissues. I. Inhibitors and stimulants of cell division in developing fruits: their properties and activity in relation to the cell division period. N. Z. Jl. Bot. 1, 336–50.CrossRefGoogle Scholar
Letham, D. S. (1967). Chemistry and physiology of kinetin-like compounds. A. Rev. Pl. Physiol. 18, 349–64.CrossRefGoogle Scholar
Michael, G., Schultze, R. & Wagner, H. (1969). Modellversuche zur Bedeutung der Granne für die Versorgung des Gerstenkornes mit Cytokininen. Flora, Jena 160, 306–16.Google Scholar
Michael, G., Allinger, P. & Wilberg, E. (1970). Einige Aspekte zur normonalen Regulation der Komgrösse bei Getreide. Z. Pfl-Ernähr. Düng. Bodenk. 125, 2435.CrossRefGoogle Scholar
Miller, C. O., Skoog, F., Von Saltza, M. H. & Strong, F. M. (1955). Kinetin, a cell division factor from desoxyribonucleic acid. J. Am. chem. Soc. 77, 1392.CrossRefGoogle Scholar
Ruckenbauer, P. (1969). Die Beurteilung der Leistungfähigkeit von Winterweizensorten nach bestimmten Organrelationen. Z. Acker-u. PflBau 130, 273–90.Google Scholar
Ruckenbauer, P. (1970). Korrelationen zwischen Organmerkmalen von Getreidepflanzen, dargestellt an F3-Individuen einer Winterweizenkreuzung. Bodenkultur 21, 264–80.Google Scholar
Seth, A. K. & Wareing, P. F. (1967). Hormonedirected transport of metabolites and its possible role in plant senescence. J. exp. Bot. 18, 6577.CrossRefGoogle Scholar
Sitton, D., Itai, C. & Kende, H. (1967). Decreased cytokinin production in the roots as a factor in shoot senescence. Planta 73, 296300.CrossRefGoogle ScholarPubMed
Wagner, H. & Michael, G. (1969). Cytokinin-Bildung in Wurzeln von Sonnenblumen bei unterschiedlicher Stickstoffernährung und Chloramphemicol-Zusatz. Naturwissenschaften 56, 379.CrossRefGoogle Scholar
Weiss, S. & Vaadia, Y. (1965). Kinetin-like activity in root apices of sunflower plants. Life Sci. 4, 1323–26.CrossRefGoogle ScholarPubMed