Article contents
Do Herbig Ae/Be Stars Have Disks?
Published online by Cambridge University Press: 12 April 2016
Abstract
The Herbig Ae/Be stars are optically visible pre-main sequence stars of intermediate mass (M* ≈ 3−8M⊙) and are thought to be the higher mass analogues of the T Tauri stars. While there is no doubt that classical T Tauri stars, i.e. those with EW(Hα) ≳ 10 Å, are surrounded by disks, it remains controversial as to whether this is the case with the equivalent Herbig Ae/Be stars. It has even been questioned whether the powerful winds that are ejected by Herbig Ae/Be stars are driven by accretion. To address these problems we have examined a large sample of these stars with the idea of using their forbidden line emission as an indirect diagnostic for the presence of disks. Striking similarities with the classical T Tauri stars are found. For example we have discovered evidence not only for a strong correlation between near-infrared colours and the equivalent width of the forbidden line emission but also that the forbidden line emission normally arises in a blueshifted outflow component. It has already been shown in the case of the classical T Tauri stars that the correlation of near-infrared colour with forbidden line equivalent width is due to a link between the accretion rate and the outflow rate. The virtually identical relationship seen in the case of the Herbig Ae/Be stars must then also have a similar origin. Our finding that the forbidden line emission in Herbig Ae/Be stars is normally blueshifted shows not only that it arises in an outflow but, as in the classical T Tauri stars, such an asymmetry in the velocity centre of the line must be caused by the obscuring effects of a disk. We find that the correlation seen in the classical T Tauri stars between the mass-loss rate and infrared excess can be extended, when we include the Herbig Ae/Be stars, to cover almost 5 orders of magnitude in stellar luminosity. Our observations therefore broaden the findings of earlier observers for low mass young stars and indicate the presence of circumstellar disks around the majority of Herbig Ae/Be stars with forbidden line emission. A corollary of our results is that the same outflow mechanism must operate in both the classical T Tauri stars and the Herbig Ae/Be stars with forbidden line emission.
- Type
- Part 11. Young Stellar Objects
- Information
- International Astronomical Union Colloquium , Volume 163: Accretion Phenomena and Related Outflows , 1997 , pp. 525 - 530
- Copyright
- Copyright © Astronomical Society of the Pacific 1997
References
- 1
- Cited by