Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T06:15:10.211Z Has data issue: false hasContentIssue false

Cosmic Gamma-Ray Bursts: The Big Picture

Published online by Cambridge University Press:  19 September 2016

Kevin Hurley*
Affiliation:
University of California Space Sciences Laboratory, Berkeley, CA, 94720-7450, USA;[email protected]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A “typical” GRB occurs in a star-forming region of a galaxy at a redshift z~1. In currently popular models, it is caused by the collapse of a massive star which has exhausted its nuclear fuel supply. The star collapses to a black hole threaded by a strong magnetic field, and possibly fed by an accretion torus. Through a variety of processes, electrons are accelerated and gamma-rays, X-rays, optical light, and radio emission ensue, with durations from seconds to years. In this talk, I will review the general observational properties of bursts, their afterglows and host galaxies, and some of the open questions about them.

Type
Part VII Gamma-Ray Bursters
Copyright
Copyright © Springer-Verlag 2005

References

1. Akerloff, C. et al.: Nature 398, 400 (1999)CrossRefGoogle Scholar
2. Band, D. et al.: Astrophys. J. 413, 281 (1999)Google Scholar
3. Blandford, R., Znajek, R.: Mon. Not. R. Astron. Soc. 179, 433 (1977)Google Scholar
4. Bloom, J. et al.: Nature 401, 453 (1999)Google Scholar
5. Bloom, J.: astro-ph 0301028 (2002)Google Scholar
6. Burenin, R. et al.: Astron. Astrophys. 344 L53 (1999)Google Scholar
7. Coburn, W., Boggs, S.: Nature 423, 415 (2003)CrossRefGoogle Scholar
8. Connaughton, V.: Astrophys. J. 567, 1028 (2002)Google Scholar
9. Costa, E. et al.: Nature 387, 783 (1997)Google Scholar
10. Dado, S., Dar, A., De Rújula, A.: Astrophys. J. Lett. 585 L15 (2003)Google Scholar
11. Fox, D. et al.: Astrophys. J. Lett. 586 L5 (2003)Google Scholar
12. Frail, D., Kulkami, S., Nicastro, L., Feroci, M., Taylor, G.: Nature 389, 261 (1997)Google Scholar
13. Frail, D., Waxman, E., Kulkami, S.: Astrophys. J. 537, 191 (2000)Google Scholar
14. Frail, D.A. et al.: Astrophys. J. Lett. 562 L55 (2001)Google Scholar
15. Frontera, F. et al.: Astrophys. J. Suppl. 127, 59 (2000)CrossRefGoogle Scholar
16. Galama, T. et al.: Nature 395, 670 (1998)Google Scholar
17. Hakkila, J. et al.: “GRB repetition limits from current BATSE observations.” In: Gamma-Ray Bursts AIP Conference Proc. 428, ed. by Meegan, C., Preece, R., Koshut, T. (AIP: New York, 1998) pp. 236240 Google Scholar
18. Heise, J. et al.: “X-ray flashes and X-ray rich gamma-ray bursts.” In: Gamma-Ray Bursts in the Afterglow Era, eds. Costa, E., Frontera, F., Hjorth, J. (Springer: Berlin, Heidelberg, New York, 2000) pp. 1621 Google Scholar
19. Holland, S. et al.: Astron. J. 125, 2291 (2003)Google Scholar
20. Hurley, K., Sari, R., Djorgovski, S.: astro-ph 0211620 (2002)Google Scholar
21. Hurley, K. et al.: Astrophys. J. 567, 447 (2002)Google Scholar
22. Katz, J.: In: The Biggest Bangs, (Oxford University Press: Oxford 2002)CrossRefGoogle Scholar
23. Klebesadel, R., Strong, I., Olson, R.: Astrophys. J. Lett. 182 L85 (1973)Google Scholar
24. Li, W., Filippenko, A., Chornock, R., Jha, S.: Astrophys. J. Lett. 586 L9 (2003)CrossRefGoogle Scholar
25. Meszaros, P.: Ann. Rev. Astron. Astrophys. 40, 137 (2002)CrossRefGoogle Scholar
26. Paciesas, W. et al.: Astrophys. J. Suppl. 122, 465 (1999)Google Scholar
27. Perna, R., Belczynski, K.: Astrophys. J. 570, 252 (2002)Google Scholar
28. Schilling, G.: In: Flash! The Hunt for the Biggest Explosions in the Universe (Cambridge Univ. Press: Cambridge, 2002)Google Scholar
29. Stanek, K. et al.: Astrophys. J. Lett. 591 L17 (2003)Google Scholar
30. Turler, M. et al.: Astron. Astrophys. Suppl. 135, 89 (1999)Google Scholar
31. van Paradijs, J. et al.: Nature 386, 686 (1997)Google Scholar
32. Williams, G. et al.: Astrophys. J. Lett. 519 L25 (1999)Google Scholar