Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:04:56.692Z Has data issue: false hasContentIssue false

Accretion of Protobinary and Evolution of the Mass Ratio

Published online by Cambridge University Press:  22 February 2018

Tomoyuki Hanawa
Affiliation:
Department of Astrophysics, Nagoya University, Japan
Yasuhiro Ochi
Affiliation:
Department of Astrophysics, Nagoya University, Japan
Kanako Sugimoto
Affiliation:
Department of Astrophysics, Nagoya University, Japan

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have reexamined accretion in a protobinary system with two dimensional numerical simulations. We consider protostars which rotate around the center of the mass with circular orbits. The accreting gas is assumed to flow in the orbital plane. It is injected from a circle whose radius is 5 times larger than the orbital separation of the binary. The injected gas has constant surface density, in fall velocity, and specific angular momentum. The accretion depends on the specific angular momentum of the injected gas, jinf. When jinf is small, the binary accretes the gas mainly through two channels: one through the Lagrangian point L2 and the other through L3. When jinf is large, the binary accretes the gas only through the L2 point. The primary accretes more than the secondary in both cases, although the L2 point is closer to the secondary. After flowing through the L2 point, the gas flows half around the secondary and through the L1 point to the primary. Only a small amount of gas flows back to the secondary and the rest forms a circumstellar ring around the primary. The accretion decreases the mass ratio, q = M2/M1, where M1 and M2 denote the masses of the primary and secondary, respectively. The accretion rate increases with time. When jinf is large, it is negligibly small in the first few rotation periods.

Resumen

Resumen

Reexaminamos la acreción en un sistema protobinario mediante simulaciones numéricas en dos dimensiones. Consideramos estrellas en órbitas circulares en torno al centro de masa. Suponemos que el flujo de acreción del gas ocurre en el plano orbital. El gas se inyecta desde un círculo con un radio 5 veces mayor que el de la separación orbital. El gas inyectado tiene densidad superficial, velocidad de caída y momento angular específico constantes. La acrecióndepende del momento angular específico del gas inyectado, jinf. Cuando jinf es pequeño, la binaria acrece gas principalmente por dos canales: los puntos de Lagrange L2 y L3. Cuando jinf es grande, la binaria acrece gas sólo por el punto L2. En ambos casos, la primaria acrece más que la secundaria pese a que el punto L2 está más cerca de la secundaria. Después de pasar por el punto L2, el gas fluye alrededor de la secundariay a través del punto L1 hacia la primaria. Sólo una pequeñafracción del gas regresa a la secundaria; el restante forma un anillo circunestelar alrededor de la primaria. La acreción hace que el cociente de masa q = M2/M1, decrezca, donde M1 y M2*******. La tasa de acreción aumenta con el tiempo. Para jinf grandes, es despreciable durante los primeros períodos de rotación.

Type
Theoretical Approaches to Multiple Stars and Their Formation
Copyright
Copyright © Instituto de Astronomia – Mexico 2004

References

Artymowicz, P. 1983, Acta Astronomica, 33, 223 Google Scholar
Artymowicz, P., & Lubow, S.H. 1996, ApJ, 467, L77 Google Scholar
Bate, M.R., & Bonnell, I.A. 1997a, MNRAS, 285, 16 Google Scholar
Bate, M.R., & Bonnell, I.A. 1997b, MNRAS, 285, 33 CrossRefGoogle Scholar
Close, L.M., Dutrey, A., Roddier, F., Guilloteau, S., Roddier, C., Northcott, M., Menard, F., Duvert, G., Graves, J.E., & Potter, D. 1998, ApJ, 499, 883 Google Scholar
Hirsch, C. 1990 Numerical Computation of Internal and External Flows, vol. 2 (Chichester: Wiley)Google Scholar
Ochi, Y., Sugimoto, K., & Hanawa, T. 2004, in preparationGoogle Scholar
Roe, P.L. 1981, J. Comput. Phys., 43, 357 Google Scholar