Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-05T19:49:56.993Z Has data issue: false hasContentIssue false

Navigating the review process through the holier than thou

Published online by Cambridge University Press:  01 May 2020

Jeffrey B. Vancouver*
Affiliation:
Ohio University
*
*Corresponding author. Email: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Commentaries
Copyright
© Society for Industrial and Organizational Psychology, Inc. 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bem, D. J. (2000). Writing an empirical article. In R. J. Sternberg (Ed.), Guide to publishing in psychology journals (pp. 316). Cambridge, UK: Cambridge University Press.10.1017/CBO9780511807862.002CrossRefGoogle Scholar
Kerr, N. L. (1998). HARKing: Hypothesizing after the results are known. Personality and Social Psychology Review, 2, 196217. doi: 10.1207/s15327957pspr0203_4CrossRefGoogle ScholarPubMed
Köhler, T., González‐Morales, M. G., Banks, G. C., O’Boyle, E. H., Allen, J. A., Sinha, R., … Gulick, L. M. V. (2020). Supporting robust, rigorous, and reliable reviewing as the cornerstone of our profession: Introducing a competency framework for peer review. Industrial and Organizational Psychology: Perspectives on Science and Practice, 13(1), 1–27.CrossRefGoogle Scholar
Lipton, P. (2005). Testing hypotheses: Prediction and prejudice. Science, 307, 219221. doi: 10.1126/science.1103024CrossRefGoogle ScholarPubMed
Rubin, M. (2017). When does HARKing hurt? Identifying when different types of undisclosed post hoc hypothesizing harm scientific progress. Review of General Psychology, 21, 308320. doi: 10.1037/gpr0000128CrossRefGoogle Scholar
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimentation designs for generalized causal inference. Boston, MA: Houghton Mifflin.Google Scholar