Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T20:24:54.717Z Has data issue: false hasContentIssue false

Morphology and Physics of Supernova Remnants

Published online by Cambridge University Press:  30 March 2016

B. Aschenbach*
Affiliation:
Max-Planck-Institut für extraterrestrische Physik8046 Garching, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Spectrally resolved X-ray images of the Cygnus Loop and the Vela supernova remnant have been obtained during the ROSAT all sky survey. The remnants show highly filamentary brightness distributions. Temperatures between 1·106 K and 10·106 K have been measured. Both remnants show significant deviation from thermal pressure equilibrium. The highest pressure excursions of up to a factor of 50 are associated with the X-ray brightest filaments. Pressure variations are expected for very recently shocked clouds, on a smaller scale though. In a limited search of the all sky survey data 14 extended objects have been found, which have tentatively been identified as previously unknown supernova remnants. A total number of ~ 60 new remnants are expected from the analysis of the full sky.

Type
Joint Discussions
Copyright
Copyright © Kluwer 1992

References

Aschenbach, B., 1988, Appl. Optics 27, 1404.CrossRefGoogle Scholar
Aschenbach, B., 1991, Rev. Modern Astron., 4, 173.CrossRefGoogle Scholar
Bignami, G.F. and Caraveo., P.A., 1988, Astrophys. J. (Letters), 325, 5.CrossRefGoogle Scholar
Charles, P., Kahn, S., and McKee, C, 1985, Astrophys. J., 295, 456.CrossRefGoogle Scholar
Grader, R., Hill, R., and Stoering, J., 1970, Astrophys. J. (Letters), 161, 45.CrossRefGoogle Scholar
Green, D.A., 1991, Publ. Astron. Soc. Pac, 103, 209.CrossRefGoogle Scholar
Harnden, F.R. Jr., Grant, P.D., Kahn, S.M., and Seward, F.D., 1985, Astrophys. J., 299, 828.CrossRefGoogle Scholar
Kahn, S.M., Gorenstein, P., Harnden, F.R. Jr., and Seward, F.D., 1985, Astrophys. J., 299, 821.CrossRefGoogle Scholar
Kayat, M., Rolf, D., Smith, G., and Willingale, R., 1980, Mon. Not. R. Astr. Soc, 191, 729.CrossRefGoogle Scholar
Ku, W., Kahn, S., Pisarski, R., and Long, K., 1984, Astrophys. J., 278, 615.CrossRefGoogle Scholar
Leahy, D.A., Fink, R., and Nousek, J., 1990, Astrophys. J., 363, 547.CrossRefGoogle Scholar
McKee, CF., and Cowie, L.L., 1975, Astrophys. J., 195, 715.CrossRefGoogle Scholar
Pfeffermann, E., et al, 1986, Proc. SPIE 733, 519.Google Scholar
Pfeffermann, E., Aschenbach, B., and Predehl, P., 1991, Astron. Astrophys. (Letters), 246, 28.Google Scholar
Pineault, S., Landecker, T.L., and Routledge, D., 1987, Astrophys. J., 315, 580.CrossRefGoogle Scholar
Reich, W., Fürst, E., and Arnal, E.M., 1991, Astron. Astrophys., in press.Google Scholar
Seward, F.D., 1990, in Imaging X-Ray Astronomy, Elvis, M. (ed.), Cambridge University Press, p241.Google Scholar
Seward, F.D., 1990, Astrophys. J. Suppl., 73, 781.CrossRefGoogle Scholar
Trimble, V., 1971, in IAU Symposium No. 46, The Crab Nebula, Davies, R.D., and Smith, F.G. (eds.), D. Reidel Publ. Company, p12.Google Scholar