Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T22:42:41.708Z Has data issue: false hasContentIssue false

Magnetic Helicity Conservation

Published online by Cambridge University Press:  30 March 2016

Mitchell A. Berger*
Affiliation:
Mathematics, University College London, Gower Street London WC1E 6BT U.K.

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic Helicity measures basic structural properties of magnetic fields such as twist, shear, linking, writhe, and handedness. It is conserved in ideal MHD and approximately conserved during reconnection. The minimum energy state of a field with a given magnetic helicity is a linear force free field. Helicity plays an important role in MHD turbulence and dynamo theory, and provides a valuable observational tool in solar and space physics. Helicity conservation can be tracked from the solar dynamo to active regions to coronal mass ejections to magnetic clouds in interplanetary space.

Type
I. Joint Discussions
Copyright
Copyright © Astronomical Society of Pacific 2005

References

Abramenko, V. I. Wang, T., & Yurchishin, V. B. 1997, Solar Phys., 174, 291 CrossRefGoogle Scholar
Bao, S. & Zhang, H. 1998, ApJ, 496, L43 CrossRefGoogle Scholar
Berger, M. A. 1982, Bull. Am. Astron. Soc., 14, 978 Google Scholar
Berger, M. A. 1984, Geophys. Astrophys. Fluid Dyn., 30, 79 CrossRefGoogle Scholar
Berger, M. A. & Field, G. B. 1984, J. Fluid Mech., 147, 133 CrossRefGoogle Scholar
Berger, M. A. 1997, JGR, 102, 2637 Google Scholar
Berger, M. A. & Ruzmaikin, A. 2000, JGR, 105, 10481 CrossRefGoogle Scholar
Bieber, J. W., Evenson, P., & Matthaeus, W. H. 1987, ApJ, 315, 700 CrossRefGoogle Scholar
Canfield, R. C., Hudson, H. S., & McKenzie, D. E. 1999, JGR Lett., 26, 627 Google Scholar
Cantarella, J., DeTurck, D., & Gluck, H. 2001, J Math Phys 42, 876 CrossRefGoogle Scholar
Chae, J. 2001, ApJ, 560, L95 CrossRefGoogle Scholar
Démoulin, P., Mandrini, C. H., Van Driel-Gesztelyi, L., Lopez Fuentes, M. C., & Aulanier, G. 2002, Solar Phys., 207, 87 CrossRefGoogle Scholar
Démoulin, P. & Berger, M. A. 2003 Solar Phys., 215, 203 CrossRefGoogle Scholar
DeVore, C. R. 2000, ApJ, 539, 944 CrossRefGoogle Scholar
Dixon, A., Berger, M. A., Browning, P., & Priest, E. R. 1989, å, 225, 156 Google Scholar
Finn, J. M. & Antonsen, T. M. Jr. 1985, Com.Plas.Phys. Cont.Fus., 9, 11 Google Scholar
Green, L. G. et al. 2002 Solar Phys., 208, 43 CrossRefGoogle Scholar
Hale, G. E. 1927 Nature, 119, 708 CrossRefGoogle Scholar
Heyvaerts, J. & Priest, E.R. 1984, A&A, 137, 63 Google Scholar
Kusano, K., Maeshiro, T., Yokoyama, T. & Sakurai, T. 2002, ApJ, 577, 501 CrossRefGoogle Scholar
Leka, K. D., & Skumanich, A. 1999, Solar Phys., 188, 3 CrossRefGoogle Scholar
Martin, S. F., Billamoria, R. & Tracadas, P. W. 1994, Solar surface magnetism, Rutten, R. J. and Schrijver, C. J. eds., Kluwer, , page 303.Google Scholar
Moffatt, H. K. 1969 J Fluid Mech., 35, 117 Google Scholar
Nindos, A., Zhang, J., & Zhang, H. 2003, ApJ, 594, 1033 CrossRefGoogle Scholar
Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995, ApJ, 440, L109 CrossRefGoogle Scholar
Rust, D. M. & Kumar, A. 1994, Solar Phys., 155, 69 CrossRefGoogle Scholar
Rust, D. M. & Kumar, A. 1996, ApJ, 464, L199 CrossRefGoogle Scholar
Seehafer, N. 1990, Solar Phys., 125, 219 CrossRefGoogle Scholar
Song, Y. & Lysak, R. L. 1989, JGR, 94, 5273 Google Scholar
Taylor, J. B. 1986, Rev. Mod. Phys., 58, 741 CrossRefGoogle Scholar
van Ballegooijen, A. A., Cartledge, N., & Priest, E. R. 1998, Woltjer, L. 1958, Proc. Nat Acad. Sci, 44, 489 Google Scholar
Wright, A. & Berger, M. A. 1989, J. Geophys. Research, 94, 1295 CrossRefGoogle Scholar