Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T11:02:31.127Z Has data issue: false hasContentIssue false

LA-ICP-MS U–Pb zircon, columbite-tantalite and 40Ar–39Ar muscovite age constraints for the rare-element pegmatite dykes in the Altai orogenic belt, NW China

Published online by Cambridge University Press:  12 December 2016

QIFENG ZHOU*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
KEZHANG QIN*
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
DONGMEI TANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
CHUNLONG WANG
Affiliation:
Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China Xinjiang Research Center for Mineral Resource, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China University of Chinese Academy of Sciences, Beijing 100049, China
PATRICK ASAMOAH SAKYI
Affiliation:
Department of Earth Science, University of Ghana, PO Box LG 58, Legon-Accra, Ghana
*
Authors for correspondence: [email protected], [email protected]
Authors for correspondence: [email protected], [email protected]

Abstract

The Chinese Altai is renowned for its rich rare-element resources. Nine representative rare-element (REL) pegmatites were dated using LA-ICP-MS and 40Ar–39Ar methods. The columbite grains yield a weighted mean 206Pb/238U age of 239.6±3.8 Ma for the Dakalasu (Be-Nb-Ta) pegmatite and concordia U–Pb ages of 258.1±3.1 Ma and 262.3±2.5 Ma for the Xiaokalasu (Li-Nb-Ta) pegmatite. The zircons display a weighted mean 206Pb/238U age of 198.5±2.5 Ma for the Husite (Be) pegmatite and concordia U–Pb ages of 194.3±1.6 Ma and 248.2±2.2 Ma for the Qunkuer (Be) and Taerlang (barren) pegmatites. The muscovite 40Ar–39Ar dating gives plateau ages of 286.4±1.6 Ma, 297.0±2.6 Ma, 265.2±1.5 Ma, 178.8±1.0 Ma, 162.2±0.9 Ma, 237.7±1.3 Ma, 237.4±1.2 Ma and 231.9±1.2 Ma for the Talate (Li-Be-Nb-Ta), Baicheng (Nb-Ta), Kangmunagong (barren), Husite (Be), Qunkuer (Be-Nb-Ta), Xiaokalasu (Li-Nb-Ta), Weizigou (Be) and Taerlang (barren) pegmatites, respectively. These new ages coupled with previous geochronological work suggest that the REL pegmatites in the Chinese Altai formed during early Permain – Late Jurassic time. The REL pegmatites located in the Central Altaishan terrane are younger than those in the Qiongkuer–Abagong terrane, showing a correlation with the coeval and adjacent granites. The formation of the REL pegmatites and these granites indicates frequent and strong magmatic activity in the post-orogenic and anorogenic setting. The spatial and temporal distribution of pegmatites and granites reveals a magmatism path from the SE (of age early–middle Permian), to the NW (middle Permian – Middle Triassic) and finally to the central part (Middle Triassic – Jurassic) of the Chinese Altai.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adetunji, A., Olarewaju, V. O., Ocan, O. O., Ganev, V. Y. & Macheva, L. 2016. Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: a newly discovered oldest Pan African rock in southwestern Nigeria. Journal of African Earth Sciences 115, 177–90.CrossRefGoogle Scholar
Armstrong, J. T. 1989. CITZAF: Combined ZAF and Phirho(Z) Electron Beam Correction Programs. Pasadena, California: California Institute of Technology.Google Scholar
Badanina, E. V., Sitnikova, M. A., Gordienko, V. V., Melcher, F., Gäbler, H.-E., Lodziak, J. & Syritso, L. F. 2015. Mineral chemistry of columbite-tantalite from spodumene pegmatite of Kolmozero, Kola Peninsula (Russia). Ore Geology Reviews 64, 720–35.CrossRefGoogle Scholar
Beurlen, H., Da Silva, M., Thomas, R., Soares, D. & Olivier, P. 2008. Nb-Ta-(Ti-Sn) oxide mineral chemistry as tracer of rare-element granitic pegmatite fractionation in the Borborema Province, Northeastern Brazil. Mineralium Deposita 43 (2), 207–28.CrossRefGoogle Scholar
Cai, K. D., Sun, M., Yuan, C., Long, X. P. & Xiao, W. J. 2011 a. Geological framework and Paleozoic tectonic history of the Chinese Altai, NW China: a review. Russian Geology and Geophysics 52, 1619–33.Google Scholar
Cai, K. D., Sun, M., Yuan, C., Zhao, G. C., Xiao, W. J., Long, X. P. & Wu, F. Y. 2011 b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U-Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences 42, 949–68.Google Scholar
Cao, M. J., Zhou, Q. F., Qin, K. Z., Tang, D. M. & Evans, N. J. 2013. The tetrad effect and geochemistry of apatite from the Altay Koktokay No. 3 pegmatite, Xinjiang, China: implications for pegmatite petrogenesis. Mineralogy and Petrology 107 (6), 9851005.CrossRefGoogle Scholar
Černý, P. & Ercit, T. S. 1989. Mineralogy of niobium and tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. In Lanthanides, Tantalum and Niobium (eds Möller, P., Černý, F. & Saupé, F.), pp. 2779. Berlin: Springer.Google Scholar
Chai, F. M., Dong, L. H., Yang, F. Q., Liu, F., Geng, X. X. & Huang, C. K. 2010. Age, geochemistry and petrogenesis of Tiemierte granites in the Kelang basin at the southern margin of Altay, Xinjiang. Acta Petrologica Sinica 26 (2), 377–86 (in Chinese with English abstract).Google Scholar
Che, X. D., Wu, F. Y., Wang, R. C., Gerdes, A., Ji, W. Q., Zhao, Z. H., Yang, J. H. & Zhu, Z. Y. 2015 a. In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS. Ore Geology Reviews 65, 979–89.CrossRefGoogle Scholar
Che, X. D., Wu, F. Y., Wang, R. C., Gerdes, A., Ji, W. Q., Zhao, Z. H., Yang, J. H. & Zhu, Z. Y. 2015 b. Corrigendum to “In situ U-Pb isotopic dating of columbite-tantalite by LA-ICP-MS”. Ore Geology Reviews 67, 400.Google Scholar
Chen, B. & Jahn, B. M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications. Geological Magazine 139 (1), 113.CrossRefGoogle Scholar
Chen, F. W., Li, H. Q., Wang, D. H., Cai, H. & Chen, W. 2000. New chronological evidence for Yanshanian diagenetic mineralization in China's Altay orogenic belt. Chinese Science Bulletin 45, 108–14.Google Scholar
Deng, X. D., Li, J. W., Zhao, X. F., Hu, Z. C., Hu, H., Selby, D. & Souza, Z. S. D. 2013. U-Pb isotope and trace element analysis of columbite-(Mn) and zircon by laser ablation ICP-MS: implications for geochronology of pegmatite and associated ore deposits. Chemical Geology 344, 111.CrossRefGoogle Scholar
Dickin, A. P. 1995. Radiogenic Isotope Geology. Cambridge London: University Press, pp. 101–35.Google Scholar
Ding, H. H., Hu, H. H., Zhang, A. C., Ni, P. & Xu, S. J. 2010. Study on metamict zircon from the Koktokay No. 3 granitic pegmatite vein. Acta Mineralogica Sinica 32 (2), 160–7.Google Scholar
Gäbler, H.-E., Melcher, F., Graupner, T., Bahr, A., Sitnikova, M. A., Henjes-Kunst, F., Oberthür, T., Brätz, H. & Gerdes, A. 2011. Speeding up the analytical workflow for coltan Fingerprinting fingerprinting by an integrated mineral liberation analysis/LA-ICP-MS approach. Geostandards and Geoanalytical Research 35, 431–48.CrossRefGoogle Scholar
Hames, W. E. & Bowring, S. A. 1994. An empirical evaluation of the argon diffusion geometry in muscovite. Earth and Planetary Science Letters 124 (1—4), 161–9.Google Scholar
He, G. Q., Han, B. F., Yue, X. J. & Wang, J. H. 1990. Tectonic Division and Crustal Evolution of the Altai Orogenic Belt in China. Beijing: Geological House, pp. 920 (in Chinese with English abstract). Geoscience of Xinjiang, no. 2.Google Scholar
He, G. Q., Li, M. S., Liu, D. Q. & Zhou, N. H. 1994. Palaeozoic Crustal Evolution and Mineralization in Xinjiang of China. Urumqi: Xinjiang People's Publishing House, 437 pp.Google Scholar
Hu, Z. C., Gao, S., Liu, Y. S., Hu, S. H., Chen, H. H. & Huan, H. L. 2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. Journal of Analytical Atomic Spectrometry 23, 1093–101.Google Scholar
Hulsbosch, N., Hertogen, J., Dewaele, S., André, L. & Muchez, P. 2014. Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): Quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta 132, 349–74.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000 a. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Earth & Environmental Science Transactions of the Royal Society of Edinburgh 91, 181–93.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000 b. Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23, 8292.Google Scholar
Jahns, R. H. & Burnham, C. W. 1969. Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Economic Geology 64, 843–64.CrossRefGoogle Scholar
Koppers, A. A. P. 2002. ArArCALC-software for 40Ar/39Ar age calculations. Computers & Geosciecnces 28, 605–19.Google Scholar
Li, H. J., He, G. Q., Wu, T. R. & Wu, B. 2010. Discovery of the Early Paleozoic post-collisional granite in Altay, China and its geological significance. Acta Petrologican Sinica 26 (8), 2445–51 (in Chinese with English abstract).Google Scholar
Li, J. Y., Xiao, W. J., Sun, G. H. & Gao, L. M. 2003. Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In Tectonic Evolution and Metallogeny of the Chinese Altay and Tianshan (eds Mao, J. W., Goldfarb, R. J., Seltmann, R., Wang, D. H., Xiao, W. J. & Hart, C.), pp. 3174. London: IAGOD Guidebook Series, CERXCAM/NHM, 10.Google Scholar
Li, T. D. & Poliyangsiji, B. H. 2001. Tectonics and crustal evolution of Altai in China and Kazakhstan. Xinjiang Geology 19, 2732 (in Chinese).Google Scholar
Linnen, R. L., Van Lichtervelde, M. & Černý, P. 2012. Granitic pegmatites: granitic pegmatites as sources of strategic metals. Elements 8, 275–80.Google Scholar
Liu, F., Yang, F. Q., Mao, J. W., Chai, F. M. & Geng, X. X. 2009. Study on chronology and geochemistry for Abagong granite in Altay orogen. Acta Petrologica Sinica 25 (6), 1416–25 (in Chinese with English abstract).Google Scholar
Liu, F., Zhang, Z. X., Li, Q., Zhang, C. & Li, C. 2014. New precise timing constraint for the Keketuohai No. 3 pegmatite in Xinjiang, China and identification of its parental pluton. Ore Geology Reviews 56, 209–19.Google Scholar
Liu, F. L., Robinson, P. T., Gerdes, A., Xue, H. M., Liu, P. H. & Liou, J. G. 2010 a. Zircon U-Pb ages, REE concentrations and Hf isotope compositions of granitic leucosome and pegmatite from the north Sulu UHP terrane in China: Constraints on the timing and nature of partial melting. Lithos 117, 247–68.Google Scholar
Liu, G. R., Dong, L. H., Gao, F. P., Chen, J. X., Zhao, H., Wang, D. S., Song, Z. Y., He, L. X. & Qin, J. H. 2010 b. LA-ICP-MS U-Pb zircon dating and geochemistry of the Devonian granites from the Middle Kelan river valley of Altay in Xinjiang. Acta Geoscientican Sinica 31 (4), 519–31 (in Chinese with English abstract).Google Scholar
Liu, W. 1990. Petrogenetic epochs and peculiarities of genetic types of granitoids in the Altai Mts., Xinjiang Uygur Autonomous Region, China. Geotectonica et Metallogenia 14, 4356 (in Chinese).Google Scholar
Liu, W. 1993. Whole Rock Isochron Ages of Plutons, Crustal Movements and Evolution of Tectonic Setting in the Altai Mts, Xinjiang Uygur Autonomous Region. Beijing: Geological House, pp. 3550 (in Chinese with English abstract). Geoscience of Xinjiang, no. 4.Google Scholar
Liu, W., Liu, C. & Masuda, A. 1997. Complex trace-element effects of mixing-fractional crystallization composite processes: applications to the Alaer granite pluton, Altay Mountains, Xinjiang, northwestern China. Geological Review 135, 103–24 (in Chinese with English abstract).Google Scholar
Liu, W. Z., Zhang, H., Tang, H. F., Tang, Y. & Lv, Z. H. 2015. Molybdenite Re-Os dating of the Asikaerte Be-Mo deposit in Xinjiang, China and its genetic implications. Geochimica 44 (2), 145–54 (in Chinese with English abstract).Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G. & Wang, D. B. 2010 c. Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. Journal of Petrology 51, 537–71.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.CrossRefGoogle Scholar
London, D. 1986. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: evidence from fluid inclusions and phase-equilibrium experiments. American Mineralogist 71, 376–95.Google Scholar
London, D. 2005. Granitic pegmatites: an assessment of current concepts and directions for the future. Lithos 81, 281303.Google Scholar
London, D. 2009. The origin of primary textures in granitic pegmatites. The Canadian Mineralogist 47, 697724.Google Scholar
London, D. 2014. A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–7, 74104.Google Scholar
Lu, H. Z., Wang, Z. G. & Li, Y. S. 1997. Magma-fluid transition and the genesis of pegmatite dike No. 3, Altay, Xinjiang, Northwest China. Chinese Journal of Geochemistry 16 (1), 4352.Google Scholar
Luan, S. W., Mao, Y. Y., Fan, L. M., Wu, X. B. & Lin, J. H. 1995. Selection and Evaluation Research for Lithium-Beryllium-Niobium Prospecting Targets of Keketuohai-Kelumute Area. Urumqi: The State 305 Project Office, 342 pp (in Chinese).Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot/Ex, Version 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication no. 4, 70 pp.Google Scholar
Lupulscu, M. V., Chiarenzelli, J. R., Pullen, A. T. & Price, J. D. 2011. Using pegmatite geochronology to constrain temporal events in the Adirondack Mountains. Geosphere 7, 2339.Google Scholar
Lv, Z. H., Zhang, H., Tang, Y. & Guan, S. J. 2012. Petrogenesis and magmatic-hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: evidence from zircon U-Pb and Hf isotopes. Lithos 154, 374–91.Google Scholar
Marsh, J. H., Gerbi, C. C., Culshaw, N. G., Johnson, S. E., Wooden, J. L. & Clark, C. 2012. Using zircon U-Pb ages and trace element chemistry to constrain the timing of metamorphic events, pegmatite dike emplacement, and shearing in the southern Parry Sound domain, Grenville Province, Canada. Precambrian Research 192–5, 142–65.Google Scholar
Mei, H. J., Yang, X. C., Wang, J. D., Yu, X. Y., Liu, T. G. & Bai, Z. H. 1993. Trace element geochemistry of late Paleozoic volcanic rocks on the southern side of the Irtysh River and the evolutionary history of tectonic setting. In Progress of Solid Earth Sciences in Northern Xinjiang, China (ed. Tu, G. Z.), pp. 199216. Beijing: Science Press (in Chinese).Google Scholar
Melcher, F., Graupner, T., Gäbler, H.-E., Sitnikova, M., Henjes-Kunst, F., Oberthür, T., Gerdes, A. & Dewaele, S. 2015. Tantalum-(niobium-tin) mineralisation in African pegmatites and rare-metal granites: constraints from Nb-Ta oxide mineralogy, geochemistry and U-Pb geochronology. Ore Geology Reviews 64, 667719.Google Scholar
Melcher, F., Sitnikova, M. A., Graupner, T., Martin, N., Oberthür, T., Henjes-Kunst, F., Gäbler, E., Gerdes, A., Brätz, H., Davis, D. W. & Dewaele, S. 2008. Fingerprinting of conflicet minerals: columbite-tantalite (“coltan”) ores. SGA News 23, 114.Google Scholar
Mezger, K. & Krogstad, E. J. 1997. Interpretation of discordant U-Pb zircon ages: an evaluation. Journal of Metamorphic Geology 15, 126–40.Google Scholar
Qin, K. Z. 2000. Metallogeneses in relation to Central-Asia style orogeny of Northern Xinjiang. Post-Doctoral Research Report, Institute of Geology and Geophysics, Chinese Academy of Sciences, 195 pp (in Chinese with English abstract).Google Scholar
Qin, K. Z., Xiao, W. J., Zhang, L. C., Xu, X. W., Hao, J., Sun, S., Li, J. L. & Tosdal, R. M. 2005. Eight stages of major ore deposits in northern Xinjiang, NW China: clues and constraints on the tectonic evolution and continental growth of Central Asia. In Mineral Deposit Research: Meeting the Global Challenge (eds Mao, J. W. & Bierlein, F. P.), pp. 1327–30. Proceedings of the Eighth Biennial SGA Meeting Beijing, China, 1821 August 2005, Springer.CrossRefGoogle Scholar
Qu, G. S. & Zhang, J. J. 1991. Irtys Structural Zone. Beijing: Geological House, pp. 115–31 (in Chinese with English abstract). Geoscience of Xinjiang, no. 3.Google Scholar
Ren, B. Q., Zhang, H., Tang, Y. & Lv, Z. H. 2011. LA-ICP-MS U-Pb zircon geochronology of the Altai pegmatites and its geological significance. Acta Mineralogica Sinica 31 (3), 587–96 (in Chinese with English abstract).Google Scholar
Romer, R. L. & Lehmann, B. 1995. U-Pb columbite age of Neoproterozoic Ta-Nb mineralization in Burundi. Economic Geology 90, 2303–9.Google Scholar
Romer, R. L. & Smeds, S. A. 1994. Implications of U-Pb ages of columbite-tantalites from granitic pegmatites for the Palaeoproterozoic accretion of 1.90-1.85 Ga magmatic arcs to the Baltic Shield. Precambrian Research 67, 141–58.Google Scholar
Romer, R. L. & Smeds, S. A. 1996. U-Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden. Precambrian Research 76, 1530.Google Scholar
Romer, R. L. & Smeds, S. A. 1997. U-Pb columbite chronology of post-kinematic Palaeoproterozoic pegmatites in Sweden. Precambrian Research 82, 8599.Google Scholar
Romer, R. L., Smeds, S. A. & Černý, P. 1996. Crystal-chemical and genetic controls of U-Pb systematics of columbite-tantalite. Mineralogy and Petrology 57, 243–60.Google Scholar
Romer, R. L. & Wright, J. E. 1992. U-Pb dating of columbites: A geochronologic tool to datemagmatism and ore deposits. Geochimica et Cosmochimica Acta 56, 2137–42.Google Scholar
Sengör, A. M. C., Natalín, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tentonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Shen, X. M., Zhang, H. X., Wang, Q., Wyman, D. A. & Yang, Y. H. 2011. Late Devonian-Early Permian A-type granites in the southern Altay Range, Northwest China: petrogenesis and implications for tectonic setting of “A2-type” granites. Journal of Asian Earth Sciences 42 (5), 9861007.CrossRefGoogle Scholar
Simmons, W. B. & Webber, K. L. 2008. Pegmaite genesis: state of the art. European Journal of Mineralogy 20, 421–38.Google Scholar
Smith, S. R., Foster, G. L., Romer, R. L., Tindle, A. G., Kelley, S. P., Noble, S. R., Horstood, M. & Breaks, F. W. 2004. U-Pb columbite-tantalite chronology of rare-element pegmatites using TIMS and laser ablation-multi collector-ICP-MS. Contributions to Mineralogy and Petrology 147, 549–64.Google Scholar
Soman, A., Geisler, T., Tomaschek, F., Grange, M. & Berndt, J. 2010. Alteration of crystaline zircon solid solutions: a case study on zircon from an alkaline pegmatite from Zomba-Malosa, Malawi. Contributions to Mineralogy and Petrology 160 (6), 909–30.CrossRefGoogle Scholar
Spell, T. L. & McDougall, I. 2003. Characterization and calibration of 40Ar/39Ar dating standards. Chemical Geology 198, 189211.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Sun, G. H., Li, J. Y., Yang, T. N., Li, Y. P., Zhu, Z. X. & Yang, Z. Q. 2009 a. Zircon SHRIMIP U-Pb dating of two linear granite plutons in southern Altay Mountains and its tectonic implications. Geology in China 36 (5), 976–87 (in Chinese with English abstract).Google Scholar
Sun, M., Long, X. P., Cai, K. D., Jiang, Y. D., Wong, P. W., Yuan, C., Zhao, G. C., Xiao, W. J. & Wu, F. Y. 2009 b. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D: Earth Sciences 39, 114.Google Scholar
Sun, M., Yuan, C., Xiao, W. J., Long, X. P., Xiao, X., Zhao, G. C., Lin, S. H., Wu, F. Y. & Kröner, A. 2008. Zircon U-Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Paleozoic. Chemical Geology 247, 352–83.CrossRefGoogle Scholar
Sun, S. S. & Higgins, N. C. 1996. Neodymium and strontium isotope study of the Blue Tier batholith, NE Tasmania, and its bearing on the origin of tin-bearing alkali feldspar granites. Ore Geology Reviews 10, 339–65.CrossRefGoogle Scholar
Thomas, R. & Davidson, P. 2012. Water in granite and pegmatite-forming melts. Ore Geology Reviews 46, 3246.Google Scholar
Tong, Y. 2006. Geochronology, Origin of the Late Paleozoic granitoids from the Altai Orogen in China and their geological significance. PhD thesis, Chinese Academy of Geological Sciences, Beijing. Published thesis (in Chinese with English abstract).Google Scholar
Tong, Y., Wang, T., Hong, D. W. & Dai, Y. J. 2006 a. TIMS U-Pb zircon ages of Fuyun post-orogenic linear granite plutons on the southern margin of Altay orogenic belt and their implications. Acta Petrologica et Mineralogica 29 (6), 619–41 (in Chinese with English abstract).Google Scholar
Tong, Y., Wang, T., Hong, D. W., Dai, Y. J., Han, B. F. & Liu, X. M. 2007. Ages and origin of the early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica 23 (8), 1933–44 (in Chinese with English abstract).Google Scholar
Tong, Y., Wang, T., Kovach, V. P., Hong, D. W. & Han, B. F. 2006 b. Age and origin of Takeshiken postorogenic alkali-rich intrusive rocks in southern Altai, near the Mongolian border in China and its implicaitons for continental growth. Acta Petrologica et Mineralogica 22 (5), 1267–78 (in Chinese with English abstract).Google Scholar
Wang, C. L., Qin, K. Z., Tang, D. M., Zhou, Q. F., Shen, M. D., Guo, Z. L. & Guo, X. J. 2015. Geochronology and Hf isotope of zircon for the Arskartor Be-Nb-Mo deposit in Altay and its geological implications. Acta Petrologica Sinica 31 (8), 2337–52 (in Chinese with English abstract).Google Scholar
Wang, D. H., Chen, Y. C., Li, H. Y., Xu, Z. G. & Li, T. D. 1998. Mantle degassing of the Altai orogenic belt: insight from helium isotope study. Chinese Science Bulletin 43 (23), 2541–4 (in Chinese).Google Scholar
Wang, D. H., Chen, Y. C. & Xu, Z. G. 2001. Chronological study of Caledonian metamorphic pegmatite muscovite deposits in the Altay Mountains, northwestern China, and its significance. Acta Geological Sinica 75 (3), 419–25 (in Chinese with English abstract).Google Scholar
Wang, D. H., Chen, Y. C. & Xu, Z. G. 2003. 40Ar/39Ar isotope dating on muscovite from Indosinian rare metal deposits in Central Altay, Northwestern China. Bulletin of Mineralogy, Petrology and Geochemistry 22 (1), 14–7 (in Chinese with English abstract).Google Scholar
Wang, D. H., Chen, Y. C., Zou, T. R., Xu, Z. G., Li, H. Q., Chen, W., Chen, F. W. & Tian, F. 2000. 40Ar/39Ar dating for the Azubai rare metal-gem deposit in Altay, Xinjiang: New evidence for Yanshanian mineralization of rare metals. Geological Review 46 (3), 307–11 (in Chinese with English abstract).Google Scholar
Wang, D. H., Zou, T. R., Xu, Z. G., Yu, J. J. & Fu, X. F. 2004. Advance in the study of using pegmatite deposits as the tracer of orogenic process. Advances in Earth Science 19 (3), 614–20 (in Chinese with English abstract).Google Scholar
Wang, F., Lu, X. X., Lo, C. H., Wu, F. Y., He, H. Y., Yang, L. K. & Zhu, R. X. 2007 a. Post-collisional, potassic monzonite-minette complex (Shahewan) in the Qinling Mountains (central China): 40Ar/39Ar thermochronology, petrogenesis, and implications for the dynamic setting of the Qinling orogen. Journal of Asian Earth Sciences 31 (2), 153–66.Google Scholar
Wang, F., Zhou, X. H., Zhang, L. C., Ying, J. F., Zhang, Y. T., Wu, F. Y. & Zhu, R. X. 2006 a. Late Mesozoic volcanism in the Great Xin'an Range (NE China): timing and implications for the dynamic setting of NE Asia. Earth and Planetary Science Letters 251, 179–98.Google Scholar
Wang, R. C., Che, X. D., Zhang, W. L., Zhang, A. C. & Zhang, H. 2009 a. Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). European Journal of Mineralogy 21, 795809.Google Scholar
Wang, R. C., Hu, H., Zhang, A. C., Fontan, F., Parseval, P. D. & Jiang, S. Y. 2007 b. Cs-dominant polylithionite in the Koktokay #3 pegmatite, Altai, NW China: in situ micro-characterization and implication for the storage of radioactive cesium. Contributions to Mineralogy and Petrology 153, 355–67.Google Scholar
Wang, T., Hond, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F. & Wang, X. X. 2006 b. Timing, petrogenesis and setting of Paleozoic syn-orogenic intrusions from the Altai Mountains, NW China: Implications for tectonic evolution of an accretionary orogen. Journal of Geology 114, 735–51.Google Scholar
Wang, T., Hong, D. W., Tong, Y., Han, B. F. & Shi, Y. R. 2005. Zircon U-Pb SHRIMP age and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: its implications for vertical continental growth. Acta Petrologica Sinica 21 (3), 640–50 (in Chinese with English abstract).Google Scholar
Wang, T., Jahn, B. M., Kovach, V. P., Tong, Y., Hong, D. W. & Han, B. F. 2009 b. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110, 359–72.Google Scholar
Wang, T., Tong, Y., Jahn, B. M., Zou, T. R., Wang, Y. B., Hong, D. W. & Han, B. F. 2007 c. SHRIMP U-Pb Zircon geochronology of the Altai No. 3 Pegmatite, NW China, and its implications for the origin and tectonic setting of the pegmatite. Ore Geology Reviews 32, 325–36.Google Scholar
Wang, T., Tong, Y., Li, S., Zhang, J. J., Shi, X. J., Li, J. Y., Han, B. F. & Hong, D. W. 2010. Spatial and temporal variations of granitoids in the Altay orogen and their implications for tectonic setting and crustal growth: perspectives from Chinese Altay. Acta Petrologica et Mineralogica, 29 (6), 595618 (in Chinese with English abstract).Google Scholar
Wang, X. J., Zou, T. R., Xu, J. G., Yu, X. Y. & Qiu, Y. Z. 1981. Study of Pegmatite Minerals of the Altai Region. Beijing: Science Press, 140 pp (in Chinese).Google Scholar
Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 123.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164, 3147.Google Scholar
Windley, B. F., Kröner, A., Guo, J., Qu, G., Li, Y. & Zhang, C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology 110, 719–37.Google Scholar
Xiao, W. J., Windley, B. F., Badarch, G., Sun, S., Li, J. L., Qin, K. Z. & Wang, Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of the Geological Society, London 161, 339–42.Google Scholar
Xiao, W. J., Windley, B. F., Yuan, C., Sun, M., Han, C. M., Lin, S. F., Chen, H. L., Yan, Q. R., Liu, D. Y., Qin, K. Z., Li, J. L. & Sun, S. 2009. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Science 309, 221–70.Google Scholar
Xiao, X. C., Tang, Y. Q., Feng, Y., Zhu, B., Li, J. & Zhou, M. 1992. Tectonics in northern Xinjiang and its neighbouring areas. Beijing: Geological Publishing, 171 pp (in Chinese with English abstract).Google Scholar
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F. & Wu, F. Y. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chinese Science Bulletin 53, 1565–73.CrossRefGoogle Scholar
York, D. 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters 5, 320–4.CrossRefGoogle Scholar
Yuan, C., Sun, M., Long, X. P., Xia, X. P., Xiao, W. J., Li, X. H., Lin, S. F. & Cai, K. D. 2007 a. Constraining the deposition time and tectonic background of the Habahe Group of the Altai. Acta Petrologica Sinica 23 (7), 1635–44 (in Chinese with English abstract).Google Scholar
Yuan, C., Sun, M., Xiao, W. J., Li, X. H., Chen, H. L., Lin, S. F., Xia, X. P. & Long, X. P. 2007 b. Accretionary orogenesis of the Chinese Altai: insights from Palaeozoic granitoids. Chemical Geology 242, 2239.Google Scholar
Zhang, A. C., Wang, R. C., Jiang, S. Y., Hu, H. & Zhang, H. 2008. Chemical and textural features of tourmaline from the spodumene-subtype Koktokay No. 3 pegmatite, Altai, northwestern China: a record of magmatic to hydrothermal evolution. The Canadian Mineralogist 46, 4158.Google Scholar
Zhang, X. B., Sui, J. X., Li, Z. C., Liu, W., Yang, X. Y., Liu, S. S. & Huang, H. Y. 1996. Evolution of the Erqis Structural Belt and Mineralization. Beijing: Science Press, 205 pp (in Chinese).Google Scholar
Zhao, Z. H., Wang, Z. G., Zou, T. R. & Masuda, A. 1993. The REE, isotopic composition of O, Pb, Sr and Nd and petrogenesis of granitoids in the Altai region. In Progress of Solid-Earth Sciences in Northern Xinjiang, China (ed. Tu, G. Z.), pp. 239–66. Beijing: Science Press (in Chinese with English abstract).Google Scholar
Zhou, G., Zhang, Z. C., Luo, S. B., He, B, Wang, X., Yin, L. J., Zhao, H., Li, A. H. & He, Y. K. 2007. Confirmation of high-temperature strongly peraluminous Mayin'ebo granites in the south margin of Altay, Xinjiang: age, geochemistry and tectonic implications. Acta Petrologica Sinica 23 (8), 1909–20 (in Chinese with English abstract).Google Scholar
Zhou, Q. F., Qin, K. Z., Tang, D. M., Ding, J. G. & Guo, Z. L. 2013. Mineralogy and significance of micas and feldspars from the Koktokay No. 3 pegmatitic rare-element deposit, Altai. Acta Petrologica Sinica 29 (9), 3004–22 (in Chinese with English abstract).Google Scholar
Zhou, Q. F., Qin, K. Z., Tang, D. M., Tian, Y., Cao, M. J. & Wang, C. L. 2015 a. Formation age and evolution time span of the Koktokay No. 3 pegmatite, Altai, NW China: evidence from U-Pb zircon and 40Ar/39Ar muscovite ages. Resource Geology 65 (3), 210–31.Google Scholar
Zhou, Q. F., Qin, K. Z., Tang, D. M., Wang, C. L., Tian, Y. & Sakyi, P. A. 2015 b. Mineralogy of the Koktokay No. 3 pegmatite, Altai, NW China: implications for evolution and melt-fluid processes of rare-metal pegmatites. European Journal of Mineralogy 27, 433–57.CrossRefGoogle Scholar
Zhu, J. C., Wu, C. N., Liu, C. S., Li, F. C., Huang, X. L. & Zhou, D. S. 2000. Magmatic-hydrothermal evolution and genesis of Koktokay No. 3 rare metal pegmatite dyke, Altai, China. Geological Journal of China Universities 6 (1), 4052 (in Chinese with English abstract).Google Scholar
Zhu, Y. F., Zeng, Y. S. & Gu, L. B. 2006. Geochemistry of the rare metal-bearing pegmatite No. 3 vein and related granites in the Keketuohai region, Altay Mountains, northwest China. Journal of Asian Earth Sciences 27, 6177.Google Scholar
Zou, T. R., Cao, H. Z. & Wu, B. Q. 1989. Orogenic and anorogenic granitoids of Altay Mountains of Xinjiang and their discrimination criteria. Acta Geologica Sinica 2, 4564 (in Chinese with English abstract).Google Scholar
Zou, T. R. & Li, Q. C. 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Beijing: Geological Publishing House, 284 pp (in Chinese with English abstract).Google Scholar
Zou, T. R., Zhang, X. C., Jia, F. Y., Wang, R. C., Cao, H. Z. & Wu, B. Q. 1986. The origin of No. 3 pegmatite in Altaishan, Xinjiang. Mineral Deposits 5 (4), 3448 (in Chinese with English abstract).Google Scholar
Supplementary material: File

Zhou supplementary material

Table S1

Download Zhou supplementary material(File)
File 27.1 KB
Supplementary material: File

Zhou supplementary material

Table S2

Download Zhou supplementary material(File)
File 23 KB
Supplementary material: File

Zhou supplementary material

Table S3

Download Zhou supplementary material(File)
File 31.7 KB