Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-23T01:28:41.275Z Has data issue: false hasContentIssue false

Non-mendelian female sterility and hybrid dysgenesis in Drosophila melanogaster

Published online by Cambridge University Press:  14 April 2009

G. Picard
Affiliation:
Laboratoire de Génétique, Université de Clermont II, B.P. 45, 63170 Aubière, France
J. C. Bregliano
Affiliation:
Laboratoire de Génétique, Université de Clermont II, B.P. 45, 63170 Aubière, France
A. Bucheton
Affiliation:
Laboratoire de Génétique, Université de Clermont II, B.P. 45, 63170 Aubière, France
J. M. Lavige
Affiliation:
Laboratoire de Génétique, Université de Clermont II, B.P. 45, 63170 Aubière, France
A. Pelisson
Affiliation:
Laboratoire de Génétique, Université de Clermont II, B.P. 45, 63170 Aubière, France
M. G. Kidwell
Affiliation:
Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, U.S.A.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Systematic crosses between various strains of Drosophila melanogaster lead in some cases to partly sterile F1 females (SF females). Two main classes of strain, inducer and reactive, have been denned on the basis of this sterility, which shows very specific physiological features. SF females arise only when reactive females are crossed with inducer males. In contrast, F1 females (RSF) produced by the reciprocal cross between inducer females and reactive males have normal fertility. All wild populations tested are of the inducer category, laboratory strains are either inducer or reactive. Sterility is the result of interaction between two genetic factors denoted I and R, respectively responsible for the inducer and reactive conditions and whose unusual genetic behaviour has been described in other papers. The present paper reports experiments showing that the IR interaction is also responsible for high levels of X nondisjunction and of mutation in the SF female germ-line. The analogy with the P-M system of Kidwell, Kidwell & Sved (1977b), is discussed as are also the implications of the existence of the I-R system for spontaneous mutation research in D. melanogaster.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1978

References

REFERENCES

Bucheton, A. (1973). Contribution à l'étude de la stérilité femelle non mendélienne chez Drosophila melanogaster. Transmission héréditaire des degrés d'efficacité du factcur R. Comptes Rendus de l'Académie des Sciences de Paris, D. 276, 641644.Google Scholar
Bucheton, A., Lavige, J. M., Picard, G. & L'Heritier, P. (1976). Non mendelian female sterility in Drosophila melanogaster: quantitative variation in the efficiency of inducer and reactive strains. Heredity 36, 305314.Google Scholar
Bucheton, A. & Picard, G. (1975). Mise en évidence d'une influence partiellement h'ritable de l'âge sur un phénomène de stérilité femelle à détenninisme non mendelien chez Drosophila melanogaster. Comptes Bendus de l'Académie des Sciences de Paris D 281, 10351038.Google Scholar
Bucheton, A. & Picard, G. (1978). Non mendelian female sterility in Drosophila melanogaster: Hereditary transmission of reactivity levels. Heredity 40, 207223.CrossRefGoogle Scholar
David, J. (1959). Etude quantitative du déVeloppement de la Drosophile élevée en milieu axénique. Bulletin de la Société Biologique de France et de Belgique 93, 472505.Google Scholar
Demerec, M. (1937). Frequency of spontaneous mutations in certain stocks of Drosophila mekmogaster. Genetics 22, 469.Google Scholar
Golubovsky, M. D. & Erokhina, I. D. (1977). Mutational process in lines with supermutable singed alleles in Drosophila melanogaster. Genetika 13, 12101219.Google Scholar
Green, M. M. (1976). Mutable and mutator loci In The Genetics and Biology of Drosophila, vol. 1 b (ed. Ashburner and Novitsky).Google Scholar
Green, M. M. (1977). Genetic instability in Drosophila melanogaster: de novo induction of putative insertion mutations. Proceedings of the National Academy of Sciences, U.S.A. 74, 34903493.CrossRefGoogle ScholarPubMed
Ives, P. T. (1950). The importance of mutation rate genes in evolution. Evolution 4, 236252.CrossRefGoogle Scholar
Kidwell, M. G. (1975). The enigma of mutator systems in Drosophila melanogaster. Genetics 80, S47.Google Scholar
Kidwell, M. G. & Kidwell, J. F. (1975). Cytoplasm-chromosome interactions in Drosophila melanogaster. Nature 253, 755756.CrossRefGoogle Scholar
Kidwell, M. G., Kidwell, J. F. & Ives, P. T. (1977 a). Spontaneous non reciprocal mutation and sterility in strain crosses of Drosophila melanogaster. Mutation Research 42, 8998.Google Scholar
Kidwell, M. G., Kidwell, J. F. & Sved, J. A. (1977 6). Hybrid dysgenesis in Drosophila melanogaster: a syndrome of aberrant traits including mutation, sterility and male recombination. Genetics 86, 813833.Google Scholar
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Publications of the Carnegie Institution of Washington, no. 627.Google Scholar
Minamori, S. (1969). Extra chromosomal element delta in Drosophila melanogaster. I. Gene dependence of killing action and of multiplication. Genetics 62, 583596.CrossRefGoogle Scholar
Minamori, S. (1972). Extra chromosomal element delta in Drosophila melanogaster. VIII. Inseparable association with sensitive second chromosome. Genetics 70, 557566.CrossRefGoogle Scholar
Pelisson, A. (1978). Non-mendelian female sterility in Drosophila melanogaster variations of chromosomal contamination where caused by chromosomes of various inducer efficiencies. Genetical Research (in the Press).CrossRefGoogle Scholar
Picard, G. (1971). Un cas de stérilité femelle chez D. melanogaster, lié à un agent transmis maternellement. Comptes Rendus de l'Académie des Sciences de Paris D 272, 24822487.Google Scholar
Picard, G. (1976). Non mendelian female sterility in Drosophila melanogaster: hereditary transmission of I factor. Genetics 83, 107123.CrossRefGoogle ScholarPubMed
Picard, G. (1978 a). Non-mendelian female sterility in Drosophila melanogaster: sterility in the daughter progeny of SF and RSF females. Biologie Cellulaire 32, 3, 235244.Google Scholar
Picard, G. (1978 b). Non mendelian female sterility in Drosophila melanogaster: sterility in stocks derived from the genotipically inducer or reactive offspring or SF and RSF females. Biologie Cellulaire 32, 3, 245254.Google Scholar
Picard, G. (1978 c). Non mendelian female sterility in Drosophila melanogaster. Further data on chromosomal contamination. Molecular and General Genetics (in the Press).CrossRefGoogle Scholar
Picard, G., Bucheton, A., Lavige, J. M. & Fleuriet, A. (1972). Contribution à l'étude d'un phénomène de stérilité à déterminisme non-mendelien chez Drosophila melanogaster. Comptes Rendus de l'Académie des Sciences de Paris D 275, 933936.Google Scholar
Picard, G., Bucheton, A., Lavige, J. M. & Pelisson, A. (1976). Repartition géographique des trois types de souches impliquées dans un phénomène de stérilité á déterminisme non mendelien chez Drosophila melanogaster. Comptes Rendus de l'Academie des Sciences de Paris D 282, 18131816.Google ScholarPubMed
Picard, G., Lavige, J. M., Bucheton, A. & Bregliano, J. C. (1977). Non mendelian female sterility in Drosophila melanogaster: physiological pattern of embryo lethality. Biologie Cellulaire 29, 8998.Google Scholar
Slatko, B. E. & Hiraizumi, Y. (1975). Element causing male crossing over in Drosophila melanogaster. Genetics 81, 313324.Google Scholar
Voelker, R. A. (1974). The genetics and cytology of a mutator factor in Drosophila melanogaster. Mutation Research 22, 265276.Google Scholar
Zuitin, A. I. & Pavlovetz, M. T. (1940). Mutation in several populations of Drosophila melanogaster under natural conditions. Cotnpte Rendu (Doklady) de l'Academie des Sciences de l'U.R.S.S. 29, 483486.Google Scholar