Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T15:19:34.079Z Has data issue: false hasContentIssue false

VITAMIN D AND HUMAN PREGNANCY

Published online by Cambridge University Press:  07 March 2011

REBEKAH GRAYSON*
Affiliation:
Department of Fetal Medicine, Birmingham Women's Foundation Trust, B15 2TG, UK.
MARTIN HEWISON
Affiliation:
OHRC Center, David Geffen School of Medicine at UCLA, 615 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
*
Rebekah Grayson, Department of Fetal Medicine, Birmingham Women's Foundation Trust, Edgbaston, Birmingham B15 2TGUnited Kingdom. Email address: [email protected]

Extract

At the end of 2007, Time magazine listed the “benefits of vitamin D” as one of its top 10 medical breakthroughs for that year. Since then there has been a remarkable upsurge of interest in vitamin D, with new research advances seemingly published on a weekly basis. In particular, there has been increasing awareness of the variability of vitamin D status in populations across the globe and, significantly, a growing debate about the need for revised parameters for vitamin D supplementation. Although sub-optimal vitamin D is likely to be a widespread problem for 21st century societies, it is also clear that some groups are at much greater risk of low vitamin D status. Prominent amongst these are pregnant women and the aim of the following review article will be to discuss this problem in further detail with specific emphasis on its potential physiological and clinical impact.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Holick, MF. Vitamin D deficiency. N Engl J Med 2007; 357: 266–81.CrossRefGoogle ScholarPubMed
2Holick, MF. Vitamin D status: measurement, interpretation, and clinical application. Ann Epidemiol 2009; 19: 7378.CrossRefGoogle ScholarPubMed
3Chapuy, MC, Preziosi, P, Maamer, M, Arnaud, S, Galan, P, Hercberg, S, et al. Prevalence of vitamin D insufficiency in an adult normal population. Osteoporos Int 1997; 7: 439–43.CrossRefGoogle Scholar
4Heaney, RP, Dowell, MS, Hale, CA, Bendich, A. Calcium absorption varies within the reference range for serum 25-hydroxyvitamin D. J Am Coll Nutr 2003; 22: 142–46.CrossRefGoogle ScholarPubMed
5Dawson-Hughes, B, Heaney, RP, Holick, MF, Lips, P, Meunier, PJ, Vieth, R. Estimates of optimal vitamin D status. Osteoporos Int 2005; 16: 713–16.CrossRefGoogle ScholarPubMed
6Mithal, A, Wahl, DA, Bonjour, JP, Burckhardt, P, Dawson-Hughes, B, Eisman, JA, et al. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos Int 2009; 20: 1807–20.CrossRefGoogle ScholarPubMed
7Holick, MF.Environmental factors that influence the cutaneous production of vitamin D. Am J Clin Nutr 1995; 61: 638S45S.CrossRefGoogle ScholarPubMed
8Pal, BR, Marshall, T, James, C, Shaw, NJ. Distribution analysis of vitamin D highlights differences in population subgroups: preliminary observations from a pilot study in UK adults. J Endocrinol 2003; 179: 119–29.CrossRefGoogle ScholarPubMed
9Lips, P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 2001; 22: 477501.CrossRefGoogle ScholarPubMed
10Johnson, DD, Wagner, CL, Hulsey, TC, McNeil, RB, Ebeling, M, Hollis, BW. Vitamin D Deficiency and Insufficiency is Common during Pregnancy. Am J Perinatol 2011; 1: 712.CrossRefGoogle Scholar
11Bodnar, LM, Simhan, HN, Powers, RW, Frank, MP, Cooperstein, E, Roberts, JM. High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 2007; 137: 447–52.CrossRefGoogle ScholarPubMed
12Spina, CS, Tangpricha, V, Uskokovic, M, Adorinic, L, Maehr, H, Holick, MF. Vitamin D and cancer. Anticancer Res 2006; 26: 2515–24.Google ScholarPubMed
13Zittermann, A. Vitamin D and disease prevention with special reference to cardiovascular disease. Prog Biophys Mol Biol 2006; 92: 3948.CrossRefGoogle ScholarPubMed
14Hewison, M. Vitamin D and innate immunity. Curr Opin Investig Drugs 2008; 9: 485–90.Google ScholarPubMed
15Adams, JS, Hewison, M. Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab 2008; 4: 8090.CrossRefGoogle ScholarPubMed
16Omdahl, JL, Bobrovnikova, EA, Choe, S, Dwivedi, PP, May, BK. Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway. Steroids 2001; 66: 381–89.CrossRefGoogle ScholarPubMed
17White, P, Cooke, N. The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 2000; 11: 320327.CrossRefGoogle ScholarPubMed
18Laing, JCN. Vitamin D-binding protein. In: Feldman, D, Pike, JW, Glorieux, FH, (eds). Vitamin D. Amersterdam, Elsevier 2005; 117–52.Google Scholar
19Nykjaer, A, Dragun, D, Walther, D, Vorum, H, Jacobsen, C, Herz, J, et al. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 1999; 96: 507–15.CrossRefGoogle Scholar
20Omdahl, JL, Morris, HA, May, BK. Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr 2002; 22: 139–66.CrossRefGoogle ScholarPubMed
21Jurutka, PW, Bartik, L, Whitfield, GK, Mathern, DR, Barthel, TK, Gurevich, M, et al. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. J Bone Miner Res 2007; 22 Suppl 2: V210.CrossRefGoogle ScholarPubMed
22Juppner, H, Wolf, M, Salusky, IB. FGF23: more than a regulator of renal phosphate handling? J Bone Miner Res 2010; 10: 20912097.CrossRefGoogle Scholar
23Adams, JS, Gacad, MA. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. J Exp Med 1985; 161: 755–65.CrossRefGoogle ScholarPubMed
24Papapoulos, SE, Clemens, TL, Fraher, LJ, Lewin, IG, Sandler, LM, O'Riordan, JL. 1, 25-dihydroxycholecalciferol in the pathogenesis of the hypercalcaemia of sarcoidosis. Lancet 1979; 1: 627–30.CrossRefGoogle Scholar
25Zehnder, D, Bland, R, Williams, MC, McNinch, RW, Howie, AJ, Stewart, PM, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J Clin Endocrinol Metab 2001; 86: 888–94.Google ScholarPubMed
26Gray, TK, Lester, GE, Lorenc, RS. Evidence for extra-renal 1 alpha-hydroxylation of 25-hydroxyvitamin D3 in pregnancy. Science 1979; 204: 1311–313.CrossRefGoogle Scholar
27Weisman, Y, Harell, A, Edelstein, S, David, M, Spirer, Z, Golander, A. 1 alpha, 25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 1979; 281: 317–19.CrossRefGoogle Scholar
28Zehnder, D, Evans, KN, Kilby, MD, Bulmer, JN, Innes, BA, Stewart, PM, et al. The ontogeny of 25-hydroxyvitamin D(3) 1alpha-hydroxylase expression in human placenta and decidua. Am J Pathol 2002; 161: 105–14.CrossRefGoogle Scholar
29Evans, KN, Bulmer, JN, Kilby, MD, Hewison, M. Vitamin D and placental-decidual function. J Soc Gynecol Investig 2004; 11: 263–71.CrossRefGoogle ScholarPubMed
30Vanhooke, JL, Prahl, JM, Kimmel-Jehan, C, Mendelsohn, M, Danielson, EW, Healy, KD, et al. CYP27B1 null mice with LacZreporter gene display no 25-hydroxyvitamin D3-1{alpha}-hydroxylase promoter activity in the skin. Proc Natl Acad Sci U S A. 2006; 103: 7580.CrossRefGoogle ScholarPubMed
31Sakaki, T, Kagawa, N, Yamamoto, K, Inouye, K. Metabolism of vitamin D3 by cytochromes P450. Front Biosci 2005; 10: 119–34.Google ScholarPubMed
32Novakovic, B, Sibson, M, Ng, HK, Manuelpillai, U, Rakyan, V, Down, T, et al. Placenta-specific methylation of the vitamin D 24-hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface. J Biol Chem 2009; 284: 14838–848.CrossRefGoogle ScholarPubMed
33Kovac, C. Vitamin D in pregnancy and lactation: maternal, fetal and neonatal outcomes from human and animal studies. Am J Clin Nutr 2008; 88 (suppl): 520S8S.CrossRefGoogle Scholar
34Care, A. The placental transfer of calcium. J Dev Physiol 1991; 15: 253–57.Google ScholarPubMed
35Locatelli, A, Patane, L, Ghidini, A, Marinetti, E, Zagarella, A, Pezzullo, JC, et al. Pathology findings in preterm placentas of women with autoantibodies: a case-control study. J Matern Fetal Neonatal Med 2002; 11: 339–44.Google ScholarPubMed
36Givens, M, Taylor, R, Kitzmiller, J. The chemical composition of the human fetus. J Biol Chem 1993; 102: 717.CrossRefGoogle Scholar
37David, L, Anast, C. Calicium metabolism in newborn infants. The interrelationship of parathyroid function and calcium, magnesium, and phosphorous metabolim in normal, sick and hypocalcemic newborns. J Clin Invest 1974; 54: 287–96.CrossRefGoogle Scholar
38MacIsaac, R, Heath, J, Rodda, C, Moseley, J, Care, A, Martin, T, et al. Role the fetal pararthyroid glands and parathyroid hormone-related protein in the regulation of placental transport of calcium, magnesium and inorganic phosphate. Reprod Fertil Dev 1991; 3: 447–57.CrossRefGoogle Scholar
39Math, F, Davrainville, J. Postnatal variations of extracelluar free calcium levels in the rat. Influence of under nutrition. Experientia 1979; 35: 1355–356.CrossRefGoogle Scholar
40Lima, M, Kallfelz, F, Krook, L, Nathanielsz, P. Humeral skeletal development and plasma constituent changes in foetuses of ewes maintained on a low calcium diet from 60 days gestation. Calcif Tissue Int 1993; 52: 283–90.CrossRefGoogle Scholar
41Fisher, G, Kelly, L, Smith, C. ATP-dependant calcium transport across basal plasma membranes of human placental trophoblast. Am J Physiol 1987; 252: C38C46.CrossRefGoogle Scholar
42Borke, J, Caride, A, Verma, A, Kelly, L, Smith, C, Penniston, J, et al. Calicum pump epitopes in placental trophoblast basal plasma membranes. Am J Physiol 1989; 257: C38C46.CrossRefGoogle Scholar
43Cross, N, Hillman, L, Allen, S, Krause, G, Vieira, N. Calcium homeostasis and bone metabolism during pregnancy, lactation and postweaning: a longitudinal study. Am J Clin Nutr 1995; 61: 514–23.CrossRefGoogle ScholarPubMed
44Heaney, R, Skillman, T. Calcium metabolism in normal human pregnancy. J Clin Endocrinol Metab 1971; 33: 277–82.CrossRefGoogle ScholarPubMed
45Kent, G, Price, R, Gutteridge, D, Rosman, K, Smith, M, Allen, J, et al. The efficiency of intestinal calcium absorption is increased in late pregnancy but not in established lactation. Calif Tissue Int 1991; 48: 293–95.CrossRefGoogle ScholarPubMed
46Gertner, J, Coustan, D, Kliger, A, Mallette, L, Ravin, N, Broadus, A. Pregnancy as state of physiologic absorptive hypercalciuria. Am J Med 1986; 81: 451–56.CrossRefGoogle ScholarPubMed
47Kent, G, Price, R, Gutteridge, D, Allen, J, Blakeman, S, Bhagat, C, et al. Acute effects of an oral calcium load in pregnancy and lactation: findings on renal calcium conservation and biochemical indices of bone turnover. Miner Electrolute Metab 1991; 17: 17.Google ScholarPubMed
48Hillman, L, Slatopolsky, E, Haddad, J. Perinatal vitamin D metabolism. IV. Maternal and cord serum 24,25-dihydroxyvitamin D concentrations. J Clin Endocrinol Metab 1978; 47: 1073–77.CrossRefGoogle ScholarPubMed
49Mahmud, N, Molloy, A, McPartlin, J, Corbally, R, Whitehead, AS, Scott, JM, et al. Increased prevalence of methylenetetrahydrofolate reductase C677T variant in patients with inflammatory bowel disease, and its clinical implications. Gut 1999; 45: 389–94.CrossRefGoogle ScholarPubMed
50Wieland, P, Fischer, J, Trechsel, U, Roth, H, Vetter, K, Schneider, H, et al. Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol 1980; 239: E385E90.Google ScholarPubMed
51Lund, B, Selnes, A. Plasma 1,25-dihydroxyvitamin D levels in pregnancy and lactation. Acta Endocrinol (Copenh) 1979; 92: 330–35.Google Scholar
52Bikle, DD, Gee, E, Halloran, B, Haddad, JG. Free 1,25-dihydroxyvitamin D levels in serum from normal subjects, pregnant subjects, and subjects with liver disease. J Clin Invest 1984; 74: 1966–71.CrossRefGoogle Scholar
53Wilson, S, Retallack, R, Kent, J, Worth, G, Gutteridge, D. Serum free 1,25-dihydroxyvitamin D and the free 1,25-dihydroxyvitamin D index during a longitudinal study of human pregnancy and lactation. Clin Endocrinol (Oxf) 1990; 32: 613–22CrossRefGoogle Scholar
54Kovacs, CS, Kronenberg, HM. Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr Rev 1997; 18: 832–72.Google ScholarPubMed
55Kovacs, C. Calcium and bone metabolism in pregnancy and lactation. J Clin Endorinol Metab 2001; 86: 2344–348.Google ScholarPubMed
56Gray, TK, Lowe, W, Lester, GE. Vitamin D and pregnancy: the maternal-fetal metabolism of vitamin D. Endocr Rev 1981; 2: 264–74.CrossRefGoogle ScholarPubMed
57Weisman, Y, Vargas, A, Duckett, G, Reiter, E, Root, A. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology 1978; 103: 1992–996.CrossRefGoogle Scholar
58Castillo, L, Tanaka, Y, Wineland, MJ, Jowsey, JO, DeLuca, HF. Production of 1,25-dihydroxyvitamin D3 and formation of medullary bone in the egg-laying hen. Endocrinology 1979; 104: 1598–601.CrossRefGoogle Scholar
59Weisman, Y, Sapir, R, Harell, A, Edelstein, S. Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta 1976; 428: 388–95.CrossRefGoogle ScholarPubMed
60Glorieux, F, Arabian, A, Delvin, E. Pseudo-vitamin D deficiency:absence of 25-hydroxyvitamin D 1 alpha-hydroxylase activityin human placenta decidual cells. J Clin Endocrinol Metab 1995; 80: 2255–258.Google Scholar
61Weisman, Y, Vargas, A, Duckett, G, Reiter, E, Root, A. Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology 1978; 103: 1992–996.CrossRefGoogle Scholar
62Lachenmaier-Currle, U, Harmeyer, J. Placental transport of calcium and phosphorus in pigs. J Perinat Med 1989; 17: 127–36.CrossRefGoogle ScholarPubMed
63Paulson, S, Ford, K, Langman, C. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol 1990; 258: E158E62.Google ScholarPubMed
64Delvin, E, Gilbert, M, Pere, M, Garel, J. In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol 1988; 10: 451–59.Google ScholarPubMed
65Ross, R, Halbert, K, Tsang, R. Determination of the production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 in the pregnant sheep and its chronically catheterized fetus by primed infusion technique. Pediatr Res 1989; 26: 633–38.CrossRefGoogle ScholarPubMed
66Dahlman, T, Sjoberg, H, Bucht, E. Calcium homeostasis in normal pregnancy and puerperium. A longitudinal study. Acta Obstet Gynecol Scand 1994; 73: 393–98.CrossRefGoogle ScholarPubMed
67Seki, K, Makimura, N, Mitsui, C, Hirata, J, Nagata, I. Calcium regulating hormones and osteocalcin levels during pregnancy: a longitudinal study. Am J Obstet Gynecol 1991; 164: 1248–52.CrossRefGoogle ScholarPubMed
68Rasmussen, N, Frolich, A, Hornnes, P, Hegedus, L. Serum ionized calcium and intact parathyroid hormone levels during pregnancy and postpartum. Br J Obstet Gynaecol 1990; 97: 857–59.CrossRefGoogle ScholarPubMed
69Gallacher, S, Fraser, W, Owens, O, Dryburgh, F, Logue, F, Jenkins, A, et al. Changes in calciotrophic hormones and biochemical markers of bone turnover in normal human pregnancy. Eur J Endocrinol 1994; 131: 369–74.CrossRefGoogle ScholarPubMed
70Baksi, S, Kenny, A. Acute effect of estradiol on the renalvitamin D hydroxylases in Japanese quail. Biochem Pharmacol 1978; 27: 2765–768.CrossRefGoogle ScholarPubMed
71Spanos, E, Colston, K, Evans, I, Galante, L, Macauley, S, MacIntyre, I. Effect of prolactin on vitamin D metabolism. Mol Cell Endocrinol 1979; 5: 163–67CrossRefGoogle Scholar
72Spanos, E, Brown, D, Stevenson, J, MacIntyre, I. Stimulation of 1,25-dihydroxycholecalciferol production by prolactin and related peptides in intact renal cell preparations in vitro. Biochim Biophys Acta 1981; 672: 715CrossRefGoogle ScholarPubMed
73Noff, D, Edelstein, S. Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res 1978; 9: 292300.CrossRefGoogle ScholarPubMed
74Ross, R, Care, A, Robinson, J, Pickard, D, Weatherley, A. Perinatal 1,25-dihydroxycholecalciferol in the sheep and its role in the maintenance of the transplacental calcium gradient. J Endocrinol 1980; 87: 17P–8P.Google Scholar
75Whitfield, GK, Dang, HT, Schluter, SF, Bernstein, RM, Bunag, T, Manzon, LA, et al. Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology 2003; 144: 2704–716.CrossRefGoogle ScholarPubMed
76Fleischman, A, Rosen, J, Cole, J, Smith, C, DeLuca, H. Maternal and fetal serum 1,25-dihydroxyvitamin D levels at term. J Pediatr 1980; 97: 640–42.CrossRefGoogle Scholar
77Seki, K, Furuya, K, Makimura, N, Mitsui, C, Hirata, J, Nagata, I. Cord blood levels of calcium-regulating hormones and osteocalcinin premature infants. J Perinat Med 1994; 22: 189–94.CrossRefGoogle Scholar
78Hollis, B, Pittard, W. Evaluation of the total fetomaternal vitamin D relationships at term: evidence for racial differences. J Clin Endocrinol Metab 1984; 59: 652–57.CrossRefGoogle ScholarPubMed
79Haddad, JG Jr., Boisseau, V, Avioli, LV. Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med 1971; 77: 908–15.Google ScholarPubMed
80Brommage, R, DeLuca, H. Placental transport of calcium and phosphorus is not regulated by vitamin D. Am J Physiol 1984; 246: F526–F9.Google Scholar
81Halloran, B, De Luca, H. Effect of vitamin D deficiency on skeletal development during early growth in the rat. Arch Biochem Biophys 1981; 209: 714.CrossRefGoogle ScholarPubMed
82Miller, S, Halloran, B, DeLuca, H, Jee, W. Studies on the role of vitamin D in early skeletal development, mineralization, and growth in rats. Calcif Tissue Int 1983; 35: 455–60.CrossRefGoogle ScholarPubMed
83Yoshizawa, T, Handa, Y, Uematsu, Y, Sekine, K, Takeda, S, Yoshihara, Y, et al. Disruption of the vitamin D receptor (VDR) in the mouse [abstract]. J Bone Miner Res 1996; 11 (Suppl 1): S124.Google Scholar
84Li, Y, Pirro, A, Amling, M, Delling, G, Baron, R, BronsonR, et al R, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D dependent rickets type II with alopecia. Proc Natl Acad Sci USA 1997; 94: 9831–835.CrossRefGoogle ScholarPubMed
85Glazier, J, Mawer, E, Sibley, C. Calbindin-D9K gene expression in rat chorioallantoic placenta is not regulated by 1,25-dihydroxyvitamin D3. Pediatr Res 1995; 37: 720–25.CrossRefGoogle ScholarPubMed
86Campbell, D, Fleischman, A. Rickets of prematurity: controversies in causation and prevention. Clin Perinatol 1988; 15: 879–90.CrossRefGoogle ScholarPubMed
87Specker, B. Do North American women need supplemental vitamin D during pregnancy or lactation?. Am J Clin Nutr 1994; (59 Suppl): 484S–90S.CrossRefGoogle Scholar
88Shamley, D, Veale, G, Pettifor, J, Buffenstein, R. Trophoblastic giant cells of the mouse placenta contain calbindin-D9K but not the vitamin D receptor. J Endocrinol 1996; 150: 2532.CrossRefGoogle Scholar
89Tanamura, A, Nomura, S, Kurauchi, O, Furui, T, Mizutani, S, Tomoda, Y. Purification and characterization of 1,25(OH)2D3 receptor from human placenta. J Obstet Gynaecol 1995; 21: 631–39.CrossRefGoogle ScholarPubMed
90Stumpf, W, Sar, M, Narbaitz, R, Huang, S, DeLuca, H. Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res 1983; 18: 215–20.CrossRefGoogle ScholarPubMed
91Durand, D, Barlet, J, Braithwaite, G. The influence of 1,25-dihydroxycholecalciferol on the mineral content of foetal guinea pigs. Reprod Nutr Dev 1983; 23: 235–44.CrossRefGoogle ScholarPubMed
92Durand, D, Braithwaite, G, Barlet, J. The effect of 1a-hydroxycholecalciferol on the placental transfer of calcium and phosphate in sheep. Br J Nutr 1983; 49: 475–80.CrossRefGoogle Scholar
93Leroyer-Alizon, E, David, L, Anast, C, Dubois, P. Immunocytological evidence for parathyroid hormone in human fetal parathyroid glands. J Clin Endocrinol Metab 1981; 52: 513–16.CrossRefGoogle ScholarPubMed
94Weatherley, A, Ross, R, Pickard, D, Care, A. The transfer of calcium during perfusion of the placenta and intact and thyroparathyroidectomized sheep. Placenta 1983; 4: 271–77.CrossRefGoogle ScholarPubMed
95Gensure, RC, Gardella, TJ, Juppner, H. Parathyroid hormone and parathyroid hormone-related peptide, and their receptors. Biochem Biophys Res Commun 2005; 328: 666–78.CrossRefGoogle ScholarPubMed
96Loveridge, N, Dean, V, Goltzman, D, Hendy, GN. Bioactivity of parathyroid hormone and parathyroid hormone-like peptide: agonist and antagonist activities of amino-terminal fragments as assessed by the cytochemical bioassay and in situ biochemistry. Endocrinology 1991; 128: 1938–46.CrossRefGoogle ScholarPubMed
97Fenton, SL, Drayson, MT, Hewison, M, Vickers, E, Brown, G, Bunce, CM. Clofibric acid: a potential therapeutic agent in AML and MDS. Br J Haematol 1999; 105: 448–51.CrossRefGoogle ScholarPubMed
98Cornish, J, Callon, K, Nicholson, G, Reid, I. Parathyroid hormone-related protein-(107–139) inhibits bone resorption in vivo. Endocrinology 1997; 138: 1299–304.CrossRefGoogle ScholarPubMed
99Seki, K, Wada, S, Nagata, N, Nagata, I. Parathyroid hormone related protein during pregnancy and the perinatal period. Gynecol Obstet Invest 1994; 37: 8386.CrossRefGoogle ScholarPubMed
100MacIsaac, R, Caple, I, Danks, J, Diefenbach-Jagger, H, Grill, V, Moseley, J, et al. Ontogeny of parathyroid hormone-related protein in the ovine parathyroid gland. Endocrinology 1991; 129: 757–64.CrossRefGoogle ScholarPubMed
101Abbas, S, Pickard, D, Illingworth, D, Storer, J, Purdie, D, Moniz, C, et al. Measurement of parathyroid hormone-related protein in extracts of fetal parathyroid glands and placental membranes. J Endocrinol 1990; 24: 319–25.CrossRefGoogle Scholar
102Lee, K, Deeds, J, Segre, G. Expression of parathyroid hormone- related peptide and its receptor messenger ribonucleic acids during fetal development of rats. Endocrinology 1995; 136: 453–63.CrossRefGoogle ScholarPubMed
103Karmali, R, Schiffmann, S, Vanderwinden, J, Hendy, G, Nys-DeWolf, N, Corvilain, J, et al. Expression of mRNA of parathyroid hormone-related peptide in fetal bones of the rat. Cell Tissue Res 1992; 270: 597600.CrossRefGoogle ScholarPubMed
104Senior, P, Heath, D, Beck, F. Expression of parathyroid hormone-related protein mRNA in the rat before birth: demonstration by hybridization histochemistry. J Mol Endocrinol 1991; 6: 281–90.CrossRefGoogle ScholarPubMed
105Bowden, S, Emly, J, Hughes, S, Powell, G, Ahmed, A, Whittle, M, et al. Parathyroid hormone-related protein in human term placenta and membranes. J Endocrinol 1994; 142: 217–24.CrossRefGoogle ScholarPubMed
106Esber, EJ, Ferguson, DR. Primary sclerosing cholangitis. Gastroenterologist 1994; 2: 131–46.Google ScholarPubMed
107Wasserman, RH, Smith, CA, Brindak, ME, De Talamoni, N, Fullmer, CS, Penniston, JT, et al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine. Gastroenterology. 1992; 102: 886–94.CrossRefGoogle ScholarPubMed
108Miller, S, Halloran, B, DeLuca, H, Jee, W. Role of vitamin D in maternal skeletal changes during pregnancy and lactation: a histomorphometric study. Calcif Tissue Int 1982; 34: 245–52.CrossRefGoogle ScholarPubMed
109Bruns, ME, Bruns, DE. Vitamin D metabolism and function during pregnancy and the neonatal period. Ann Clin Lab Sci 1983; 13: 521–30.Google ScholarPubMed
110Rebut-Bonneton, C, Demignon, J. Effects of 1,25-dihydroxyvitamin D3 on in vitro lymphocyte reactions: arguments for a role at the maternofetal interface. Gynecol Obstet Invest 1991; 32: 134–38.CrossRefGoogle ScholarPubMed
111Sacks, G, Sargent, I, Redman, C. Innate immunity in pregnancy. Immunol Today 2000; 21: 200201.CrossRefGoogle ScholarPubMed
112Sacks, G, Sargent, I, Redman, C. An innate view of human pregnancy. Immunol Today. 1999; 20: 114–18.CrossRefGoogle ScholarPubMed
113Guleria, I, Pollard, JW. The trophoblast is a component of the innate immune system during pregnancy. Nat Med 2000; 6: 589–93.CrossRefGoogle ScholarPubMed
114Zenclussen, AC, Schumacher, A, Zenclussen, ML, Wafula, P, Volk, HD. Immunology of pregnancy: cellular mechanisms allowing fetal survival within the maternal uterus. Expert Rev Mol Med 2007; 9: 114.CrossRefGoogle ScholarPubMed
115Laskarin, G, Kammerer, U, Rukavina, D, Thomson, AW, Fernandez, N, Blois, SM. Antigen-presenting cells and materno-fetal tolerance: an emerging role for dendritic cells. Am J Reprod Immunol 2007; 58: 255–67.CrossRefGoogle ScholarPubMed
116Jones, G, Strugnell, SA, DeLuca, HF. Current understanding of the molecular actions of vitamin D. Physiol Rev 1998; 78: 1193–231.CrossRefGoogle ScholarPubMed
117Townsend, K, Evans, KN, Campbell, MJ, Colston, KW, Adams, JS, Hewison, M. Biological actions of extra-renal 25-hydroxyvitamin D-1alpha-hydroxylase and implications for chemoprevention and treatment. J Steroid Biochem Mol Biol 2005; 97: 103109.CrossRefGoogle ScholarPubMed
118Adams, JS, Liu, P, Chun, R, Modlin, RL, Hewison, M. Vitamin D in Defense of the Human Immune Response. Ann N Y Acad Sci 2007; 1117: 94105CrossRefGoogle ScholarPubMed
119Mathieu, C, van Etten, E, Decallonne, B, Guilietti, A, Gysemans, C, Bouillon, R, et al. Vitamin D and 1,25-dihydroxyvitamin D3 as modulators in the immune system. J Steroid Biochem Mol Biol 2004; 89-90: 449–52.CrossRefGoogle Scholar
120Cantorna, MT, Zhu, Y, Froicu, M, Wittke, A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr 2004; 80 (6 Suppl): 1717S–20S.CrossRefGoogle ScholarPubMed
121Griffin, MD, Xing, N, Kumar, R. Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr 2003; 23: 117–45.CrossRefGoogle ScholarPubMed
122Deluca, HF, Cantorna, MT. Vitamin D: its role and uses in immunology. Faseb J 2001; 15: 2579–85.CrossRefGoogle ScholarPubMed
123Campbell, MJ, Adorini, L. The vitamin D receptor as a therapeutic target. Expert Opin Ther Targets 2006; 10: 735–48.CrossRefGoogle ScholarPubMed
124Hewison, M, Zehnder, D, Chakraverty, R, Adams, JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 2004; 215: 3138.CrossRefGoogle ScholarPubMed
125Kreutz, M, Andreesen, R, Krause, SW, Szabo, A, Ritz, E, Reichel, H. 1,25-dihydroxyvitamin D3 production and vitamin D3 receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood 1993; 82: 13001307.CrossRefGoogle ScholarPubMed
126Hewison, M, Freeman, L, Hughes, SV, Evans, KN, Bland, R, Eliopoulos, AG, et al. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol 2003; 170: 5382–390.CrossRefGoogle ScholarPubMed
127Boonstra, A, Barrat, FJ, Crain, C, Heath, VL, Savelkoul, HF, O'Garra, A. 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 2001; 167: 4974–80.CrossRefGoogle Scholar
128Lemire, JM, Archer, DC, Beck, L, Spiegelberg, HL. Immunosuppressive actions of 1,25-dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr 1995; 125 (6 Suppl): 1704S–8S.Google ScholarPubMed
129Barrat, FJ, Cua, DJ, Boonstra, A, Richards, DF, Crain, C, Savelkoul, HF, et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J Exp Med 2002; 195: 603–16.CrossRefGoogle Scholar
130Sigmundsdottir, H, Pan, J, Debes, GF, Alt, C, Habtezion, A, Soler, D, et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nat Immunol 2007; 8: 285–93.CrossRefGoogle Scholar
131Liu, PT, Stenger, S, Li, H, Wenzel, L, Tan, BH, Krutzik, SR, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 2006; 311: 1770–773.CrossRefGoogle ScholarPubMed
132Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 2004; 75: 3948.CrossRefGoogle ScholarPubMed
133Sadeghi, K, Wessner, B, Laggner, U, Ploder, M, Tamandl, D, Friedl, J, et al. Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol 2006; 36: 361–70.CrossRefGoogle ScholarPubMed
134Wang, TT, Dabbas, B, Laperriere, D, Bitton, AJ, Soualhine, H, Tavera-Mendoza, LE, et al. Direct and indirect induction by 1,25-dihydroxyvitamin D3 of the NOD2/CARD15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. Jan 22; 285: 2227–31.CrossRefGoogle Scholar
135Yuk, JM, Shin, DM, Lee, HM, Yang, CS, Jin, HS, Kim, KK, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe 2009; 6: 231–43.CrossRefGoogle ScholarPubMed
136Adams, JS, Ren, S, Liu, PT, Chun, RF, Lagishetty, V, Gombart, AF, et al. Vitamin D-directed rheostatic regulation of monocyte antibacterial responses. J Immunol 2009; 182: 4289–295.CrossRefGoogle ScholarPubMed
137Chun, RF, Lauridsen, AL, Suon, L, Zella, LA, Pike, JW, Modlin, RL, et al. Vitamin D-binding protein directs monocyte responses to 25-hydroxy- and 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 2010; 95: 3368–76.CrossRefGoogle Scholar
138Wang, TT, Nestel, FP, Bourdeau, V, Nagai, Y, Wang, Q, Liao, J, et al. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 2004; 173: 2909–12.CrossRefGoogle ScholarPubMed
139Schauber, J, Dorschner, RA, Coda, AB, Buchau, AS, Liu, PT, Kiken, D, et al. Injury enhances TLR2 function and antimicrobial peptide expression through a vitamin D-dependent mechanism. J Clin Invest 2007; 117: 803–11.CrossRefGoogle ScholarPubMed
140Lagishetty, V, Misharin, AV, Liu, NQ, Lisse, TS, Chun, RF, Ouyang, Y, et al. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis. Endocrinology 2010; 151: 2423–432.CrossRefGoogle ScholarPubMed
141Liu, N, Nguyen, L, Chun, RF, Lagishetty, V, Ren, S, Wu, S, et al. Altered endocrine and autocrine metabolism of vitamin d in a mouse model of gastrointestinal inflammation. Endocrinology 2008; 149: 4799–808.CrossRefGoogle Scholar
142Vigano, P, Mangioni, S, Pompei, F, Chiodo, I. Maternal-conceptus cross talk–a review. Placenta 2003; 24 Suppl B: S5661.CrossRefGoogle ScholarPubMed
143Chambon, Y.Synergic action of vitamin D and of progesterone in obtaining ovum implantation in the castrated pregnant rabbit. C R Seances Soc Biol Fil 1951; 145: 955–59.Google ScholarPubMed
144Zane, CE. Assessment of Hypervitaminosis D during the first trimester of pregnancy on the mouse embryo. Preliminary report. Arzneimittelforschung. 1976; 26: 1589–590.Google ScholarPubMed
145Halhali, A, Acker, GM, Garabedian, M. 1,25-Dihydroxyvitamin D3 induces in vivo the decidualization of rat endometrial cells. J Reprod Fertil 1991; 91: 5964.CrossRefGoogle ScholarPubMed
146Salamonsen, LA, Nie, G, Findlay, JK. Newly identified endometrial genes of importance for implantation. J Reprod Immunol 2002; 53: 215–25.CrossRefGoogle ScholarPubMed
147Luu, KC, Nie, GY, Hampton, A, Fu, GQ, Liu, YX, Salamonsen, LA. Endometrial expression of calbindin (CaBP)-d28k but not CaBP-d9k in primates implies evolutionary changes and functional redundancy of calbindins at implantation. Reproduction 2004; 128: 433–41.CrossRefGoogle Scholar
148Du, H, Daftary, GS, Lalwani, SI, Taylor, HS. Direct regulation of HOXA10 by 1,25-(OH)2D3 in human myelomonocytic cells and human endometrial stromal cells. Mol Endocrinol 2005; 19: 22222233.CrossRefGoogle ScholarPubMed
149Bubanovic, I. 1alpha,25-dihydroxy-vitamin-D3 as new immunotherapy in treatment of recurrent spontaneous abortion. Med Hypotheses 2004; 63: 250–53.CrossRefGoogle Scholar
150Ozkan, S, Jindal, S, Greenseid, K, Shu, J, Zeitlian, G, Hickmon, C, et al. Replete vitamin D stores predict reproductive success following in vitro fertilization. Fertil Steril 2010; 94: 1314–319.CrossRefGoogle ScholarPubMed
151King, AE, Kelly, RW, Sallenave, JM, Bocking, AD, Challis, JR. Innate immune defences in the human uterus during pregnancy. Placenta 2007; 28: 1099–106.CrossRefGoogle ScholarPubMed
152King, AE, Paltoo, A, Kelly, RW, Sallenave, JM, Bocking, AD, Challis, JR. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta 2007; 28: 161–69.CrossRefGoogle ScholarPubMed
153Svinarich, DM, Wolf, NA, Gomez, R, Gonik, B, Romero, R. Detection of human defensin 5 in reproductive tissues. Am J Obstet Gynecol 1997; 176: 470–75.CrossRefGoogle ScholarPubMed
154Abrahams, VM, Schaefer, TM, Fahey, JV, Visintin, I, Wright, JA, Aldo, PB, et al. Expression and secretion of antiviral factors by trophoblast cells following stimulation by the TLR-3 agonist, Poly(I: C). Hum Reprod 2006; 21: 2432–439.CrossRefGoogle ScholarPubMed
155Evans, KN, Nguyen, L, Chan, J, Innes, BA, Bulmer, JN, Kilby, MD, et al. Effects of 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 on cytokine production by human decidual cells. Biol Reprod 2006; 75: 816–22.CrossRefGoogle ScholarPubMed
156Liu, N, Kaplan, AT, Low, J, Nguyen, L, Liu, GY, Equils, O, et al. Vitamin D induces innate antibacterial responses in human trophoblasts via an intracrine pathway. Biol Reprod 2009; 80: 398406.CrossRefGoogle ScholarPubMed
157Bodnar, LM, Krohn, MA, Simhan, HN. Maternal vitamin D deficiency is associated with bacterial vaginosis in the first trimester of pregnancy. J Nutr 2009; 139: 1157–61.CrossRefGoogle ScholarPubMed
158Mehta, S, Hunter, DJ, Mugusi, FM, Spiegelman, D, Manji, KP, Giovannucci, EL, et al. Perinatal outcomes, including mother-to-child transmission of HIV, and child mortality and their association with maternal vitamin D status in Tanzania. J Infect Dis 2009; 200: 1022–30.CrossRefGoogle ScholarPubMed
159Al-Husaini, AM. Role of placenta in the vertical transmission of human immunodeficiency virus. J Perinatol 2009; 29: 331–36.CrossRefGoogle ScholarPubMed
160Coid, CR, Sandison, H, Slavin, S, Altman, DG. Escherichia coli infection in mice and impaired fetal development. Br J Exp Pathol 1978; 59: 292–97.Google ScholarPubMed
161Goldenberg, RL, Culhane, JF, Iams, JD, Romero, R. Epidemiology and causes of preterm birth. Lancet 2008; 371: 7584.CrossRefGoogle ScholarPubMed
162Vergnes, JN, Sixou, M. Preterm low birth weight and maternal periodontal status: a meta-analysis. Am J Obstet Gynecol 2007; 196: 135e17.CrossRefGoogle ScholarPubMed
163Dudley, DJ. Pre-term labor: an intra-uterine inflammatory response syndrome? J Reprod Immunol 1997; 36: 93109.CrossRefGoogle ScholarPubMed
164Romero, R, Espinoza, J, Goncalves, LF, Kusanovic, JP, Friel, L, Hassan, S. The role of inflammation and infection in preterm birth. Semin Reprod Med 2007; 25: 2139.CrossRefGoogle Scholar
165Romero, R, Espinoza, J, Goncalves, LF, Kusanovic, JP, Friel, LA, Nien, JK. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med 2006; 11: 317–26.CrossRefGoogle ScholarPubMed
166Romero, R, Erez, O, Espinoza, J. Intrauterine infection, preterm labor, and cytokines. J Soc Gynecol Investig 2005; 12: 463–5.CrossRefGoogle ScholarPubMed
167Hillier, SL, Witkin, SS, Krohn, MA, Watts, DH, Kiviat, NB, Eschenbach, DA. The relationship of amniotic fluid cytokines and preterm delivery, amniotic fluid infection, histologic chorioamnionitis, and chorioamnion infection. Obstet Gynecol 1993; 81: 941–48.Google ScholarPubMed
168Gravett, MG, Novy, MJ, Rosenfeld, RG, Reddy, AP, Jacob, T, Turner, M, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA 2004; 292: 462–69.CrossRefGoogle ScholarPubMed
169El-Shazly, S, Makhseed, M, Azizieh, F, Raghupathy, R. Increased expression of pro-inflammatory cytokines in placentas of women undergoing spontaneous preterm delivery or premature rupture of membranes. Am J Reprod Immunol 2004; 52: 4552.CrossRefGoogle ScholarPubMed
170Blank, V, Hirsch, E, Challis, JR, Romero, R, Lye, SJ. Cytokine Signaling, Inflammation, Innate Immunity and Preterm Labour. Placenta 2008; 29 Suppl A: S102–4.CrossRefGoogle ScholarPubMed
171Gomez, R, Romero, R, Edwin, SS, David, C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am 1997; 11: 135–76.CrossRefGoogle ScholarPubMed
172Ogunyemi, D, Murillo, M, Jackson, U, Hunter, N, Alperson, B. The relationship between placental histopathology findings and perinatal outcome in preterm infants. J Matern Fetal Neonat Med 2003; 13: 102109.CrossRefGoogle ScholarPubMed
173Hillier, SL, Martius, J, Krohn, M, Kiviat, N, Holmes, KK, Eschenbach, DA. A case-control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med 1988; 319: 972–78.CrossRefGoogle ScholarPubMed
174Zlatnik, FJ, Gellhaus, TM, Benda, JA, Koontz, FP, Burmeister, LF. Histologic chorioamnionitis, microbial infection, and prematurity. Obstet Gynecol 1990; 76: 355–59.Google ScholarPubMed
175Lahra, MM, Jeffery, HE. A fetal response to chorioamnionitis is associated with early survival after preterm birth. Am J Obstet Gynecol 2004; 190: 147–51.CrossRefGoogle ScholarPubMed
176Diaz, L, Noyola-Martinez, N, Barrera, D, Hernandez, G, Avila, E, Halhali, A, et al. Calcitriol inhibits TNF-alpha-induced inflammatory cytokines in human trophoblasts. J Reprod Immunol 2009; 81: 1724.CrossRefGoogle ScholarPubMed
177Norman, AW, Bouillon, R, Whiting, SJ, Vieth, R, Lips, P. 13th Workshop consensus for vitamin D nutritional guidelines. J Steroid Biochem Mol Biol 2007; 103: 204205.CrossRefGoogle ScholarPubMed
178Nesby-O'Dell, S, Scanlon, KS, Cogswell, ME, Gillespie, C, Hollis, BW, Looker, AC, et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 2002; 76: 187–92.CrossRefGoogle ScholarPubMed
179Bodnar, LM, Catov, JM, Simhan, HN, Holick, MF, Powers, RW, Roberts, JM. Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 2007; 92: 3517–22CrossRefGoogle ScholarPubMed
180Hollis, BW, Wagner, CL. Vitamin D deficiency during pregnancy: an ongoing epidemic. Am J Clin Nutr 2006; 84: 273.CrossRefGoogle ScholarPubMed
181Hollis, BW, Wagner, CL. Nutritional vitamin D status during pregnancy: reasons for concern. CMAJ 2006; 174: 1287–290.CrossRefGoogle ScholarPubMed
182Hollis, BW, Wagner, CL. Assessment of dietary vitamin D requirements during pregnancy and lactation. Am J Clin Nutr 2004; 79: 717–26.Google ScholarPubMed
183Ginde, AA, Sullivan, AFMansbach, JMCamargo, CA Jr.Vitamin D insufficiency in pregnant and nonpregnant women of childbearing age in the United States. Am J Obstet Gynecol 2010; 202: 436 e18.CrossRefGoogle ScholarPubMed
184Newhook, LA, Sloka, S, Grant, M, Randell, E, Kovacs, CS, Twells, LK. Vitamin D insufficiency common in newborns, children and pregnant women living in Newfoundland and Labrador, Canada. Matern Child Nutr 2009; 5: 186–91.CrossRefGoogle ScholarPubMed
185Sloka, S, Stokes, J, Randell, E, Newhook, LA. Seasonal variation of maternal serum vitamin D in Newfoundland and Labrador. J Obstet Gynaecol Can 2009; 31: 313–21.CrossRefGoogle ScholarPubMed
186Holmes, VA, Barnes, MS, Alexander, HD, McFaul, P, Wallace, JM. Vitamin D deficiency and insufficiency in pregnant women: a longitudinal study. Br J Nutr 2009; 102: 876–81.CrossRefGoogle ScholarPubMed
187Bowyer, L, Catling-Paull, C, Diamond, T, Homer, C, Davis, G, Craig, ME. Vitamin D, PTH and calcium levels in pregnant women and their neonates. Clin Endocrinol (Oxf). 2009; 70: 372–77.CrossRefGoogle ScholarPubMed
188O'Riordan, MN, Kiely, M, Higgins, JR, Cashman, KD. Prevalence of suboptimal vitamin D status during pregnancy. Ir Med J 2008; 101: 240, 242433.Google ScholarPubMed
189Madar, AA, Stene, LC, Meyer, HE. Vitamin D status among immigrant mothers from Pakistan, Turkey and Somalia and their infants attending child health clinics in Norway. Br J Nutr 2009; 101: 1052–58.CrossRefGoogle ScholarPubMed
190Farrant, HJ, Krishnaveni, GV, Hill, JC, Boucher, BJ, Fisher, DJ, Noonan, K, et al. Vitamin D insufficiency is common in Indian mothers but is not associated with gestational diabetes or variation in newborn size. Eur J Clin Nutr 2009; 63: 646–52.CrossRefGoogle ScholarPubMed
191Kazemi, A, Sharifi, F, Jafari, N, Mousavinasab, N. High prevalence of vitamin D deficiency among pregnant women and their newborns in an Iranian population. J Womens Health (Larchmt). 2009; 18: 835–39.CrossRefGoogle Scholar
192Salek, M, Hashemipour, M, Aminorroaya, A, Gheiratmand, A, Kelishadi, R, Ardestani, PM, et al. Vitamin D deficiency among pregnant women and their newborns in Isfahan, Iran. Exp Clin Endocrinol Diabetes 2008; 116: 352–56.CrossRefGoogle ScholarPubMed
193Narchi, H, Kochiyil, J, Zayed, R, Abdulrazzak, W, Agarwal, M. Maternal vitamin D status throughout and after pregnancy. J Obstet Gynaecol 2010; 30: 137342.CrossRefGoogle Scholar
194Teale, GR, Cunningham, CE. Vitamin D deficiency is common among pregnant women in rural Victoria. Aust N Z J Obstet Gynaecol 2010; 50: 259–61.CrossRefGoogle ScholarPubMed
195Davis, LM, Chang, SC, Mancini, J, Nathanson, MS, Witter, FR, O'Brien, KO. Vitamin D insufficiency is prevalent among pregnant African American adolescents. J Pediatr Adolesc Gynecol 2010; 23: 4552.CrossRefGoogle ScholarPubMed
196Mahon, P, Harvey, N, Crozier, S, Inskip, H, Robinson, S, Arden, N, Swaminathan, R, Cooper, C, Godfrey, K. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 2010; 25: 1419.CrossRefGoogle ScholarPubMed
197Javaid, MK, Crozier, SR, Harvey, NC, Gale, CR, Dennison, EM, Boucher, BJ, et al. Maternal vitamin D status during pregnancy and childhood bone mass at age 9 years: a longitudinal study. Lancet 2006; 367: 3643.CrossRefGoogle ScholarPubMed
198Robinson, CJ, Alanis, MC, Wagner, CL, Hollis, BW, Johnson, DD. Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. Am J Obstet Gynecol 2010; 203: 366. e16.CrossRefGoogle ScholarPubMed
199Bodnar, LM, Catov, JM, Simhan, HN, Holick, MF, Powers, RW, Roberts, JM. Maternal vitamin D deficiency increases the risk of preeclampsia. J Clin Endocrinol Metab 2007; 92: 3517–22.CrossRefGoogle ScholarPubMed
200Diaz, L, Arranz, C, Avila, E, Halhali, A, Vilchis, F, Larrea, F. Expression and activity of 25-hydroxyvitamin D-1 alpha-hydroxylase are restricted in cultures of human syncytiotrophoblast cells from preeclamptic pregnancies. J Clin Endocrinol Metab 2002; 87: 3876–882.Google ScholarPubMed
201Haugen, M, Brantsaeter, AL, Trogstad, L, Alexander, J, Roth, C, Magnus, P, et al. Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 2009; 20: 720–26.CrossRefGoogle ScholarPubMed
202Cooper, C, Westlake, S, Harvey, N, Javaid, K, Dennison, E, Hanson, M. Review: developmental origins of osteoporotic fracture. Osteoporos Int 2006; 17: 337–47.CrossRefGoogle ScholarPubMed
203O'Loan, J, Eyles, DW, Kesby, J, Ko, P, McGrath, JJ, Burne, TH. Vitamin D deficiency during various stages of pregnancy in the rat; its impact on development and behaviour in adult offspring. Psychoneuroendocrinology 2007; 32: 227–34.CrossRefGoogle ScholarPubMed
204Eyles, DW, Feron, F, Cui, X, Kesby, JP, Harms, LH, Ko, P, et al. Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 2009; 34 Suppl 1: S247–57.CrossRefGoogle ScholarPubMed
205Mackay-Sim, A, Feron, F, Eyles, D, Burne, T, McGrath, J. Schizophrenia, vitamin D, and brain development. Int Rev Neurobiol 2004; 59: 351–80.CrossRefGoogle ScholarPubMed
206Eyles, D, Brown, J, Mackay-Sim, A, McGrath, J, Feron, F. Vitamin D3 and brain development. Neuroscience 2003; 118: 641–53.CrossRefGoogle ScholarPubMed
207McGrath, JJ, Burne, TH, Feron, F, Mackay-Sim, A, Eyles, DW. Developmental vitamin D deficiency and risk of schizophrenia: A 10-Year Update. Schizophr Bull 2010; 36: 1073–78.CrossRefGoogle ScholarPubMed
208Marjamaki, L, Niinisto, S, Kenward, MG, Uusitalo, L, Uusitalo, U, Ovaskainen, ML, et al. Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia 2010; 53: 1599–607.CrossRefGoogle ScholarPubMed
209Zhang, C, Qiu, C, Hu, FB, David, RM, van Dam, RM, Bralley, A, et al. Maternal plasma 25-hydroxyvitamin D concentrations and the risk for gestational diabetes mellitus. PLoS One 2008; 3: e3753.CrossRefGoogle ScholarPubMed
210Salzer, J, Svenningsson, A, Sundstrom, P. Season of birth and multiple sclerosis in Sweden. Acta Neurol Scand 2010; 122: 7073.Google ScholarPubMed
211Gale, CR, Robinson, SM, Harvey, NC, Javaid, MK, Jiang, B, Martyn, CN, et al. Maternal vitamin D status during pregnancy and child outcomes. Eur J Clin Nutr 2008; 62: 6877.CrossRefGoogle ScholarPubMed
212Camargo, CA Jr., Rifas-Shiman, SL, Litonjua, AA, Rich-Edwards, JW, Weiss, ST, Gold, DR, et al. Maternal intake of vitamin D during pregnancy and risk of recurrent wheeze in children at 3 y of age. Am J Clin Nutr 2007; 85: 788–95.CrossRefGoogle ScholarPubMed
213Litonjua, AA, Weiss, ST. Is vitamin D deficiency to blame for the asthma epidemic? J Allergy Clin Immunol 2007; 120: 10311035.CrossRefGoogle ScholarPubMed
214Clifton-Bligh, RJ, McElduff, P, McElduff, A. Maternal vitamin D deficiency, ethnicity and gestational diabetes. Diabet Med 2008; 25: 678–84.CrossRefGoogle ScholarPubMed
215Ramos-Lopez, E, Kahles, H, Weber, S, Kukic, A, Penna-Martinez, M, Louwen, F, et al. Gestational diabetes mellitus and vitamin D deficiency: genetic contribution of CYP27B1 and CYP2R1 polymorphisms. Diabetes Obes Metab 2008; 10:683–85.CrossRefGoogle ScholarPubMed
216Bodnar, LM, Catov, JM, Zmuda, JM, Cooper, ME, Parrott, MS, Roberts, JM, et al. Maternal serum 25-hydroxyvitamin D concentrations are associated with small-for-gestational age births in white women. J Nutr 2010; 140: 9991006.CrossRefGoogle ScholarPubMed
217Leffelaar, ER, Vrijkotte, TG, van Eijsden, M. Maternal early pregnancy vitamin D status in relation to fetal and neonatal growth: results of the multi-ethnic Amsterdam Born Children and their Development cohort. Br J Nutr 2010; 104: 108–17.CrossRefGoogle ScholarPubMed
218Mahon, P, Harvey, N, Crozier, S, Inskip, H, Robinson, S, Arden, N, et al. Low maternal vitamin D status and fetal bone development: cohort study. J Bone Miner Res 2010; 25: 14–9.CrossRefGoogle ScholarPubMed
219Viljakainen, HT, Saarnio, E, Hytinantti, T, Miettinen, M, Surcel, H, Makitie, O, et al. Maternal vitamin D status determines bone variables in the newborn. J Clin Endocrinol Metab 2010; 95: 1749–57.CrossRefGoogle ScholarPubMed
220Raiten, DJ, Picciano, MF. Vitamin D and health in the 21st century: bone and beyond. Executive summary. Am J Clin Nutr 2004; 80 (6 Suppl): 1673S7S.CrossRefGoogle ScholarPubMed
221Cole, ZA, Gale, CR, Javaid, MK, Robinson, SM, Law, C, Boucher, BJ, et al. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res 2009; 24: 663–68.CrossRefGoogle ScholarPubMed
222Weiss, ST, Litonjua, AA. Childhood asthma is a fat-soluble vitamin deficiency disease. Clin Exp Allergy 2008; 38: 385–87.CrossRefGoogle ScholarPubMed
223Grant, WB, Soles, CM. Epidemiologic evidence supporting the role of maternal vitamin D deficiency as a risk factor for the development of infantile autism. Dermatoendocrinol 2009; 1: 223–28.CrossRefGoogle ScholarPubMed