Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T19:54:51.480Z Has data issue: false hasContentIssue false

HYPOXIC ISCHAEMIC ENCEPHALOPATHY IN NEWBORN INFANTS

Published online by Cambridge University Press:  19 May 2010

NAZAKAT MERCHANT
Affiliation:
Institute of Clinical Sciences, Hammersmith Campus, Imperial College London.
DENIS AZZOPARDI*
Affiliation:
Institute of Clinical Sciences, Hammersmith Campus, Imperial College London.
*
Denis Azzopardi, Division of Neonatal Medicine, 5th Floor, Ham House, Hammersmith Hospital, DuCane Road, London W12 0HS, United Kingdom. Email address: [email protected]

Extract

Neonatal encephalopathy has been defined as “a clinically defined syndrome of disturbed neurological function in the earliest days of life in the term infant, manifested by difficulty with initiating and maintaining respiration, depression of tone and reflexes, sub normal level of consciousness and often seizures”. It occurs in about 2–3 per 1000 births in developed countries. In developing countries, neonatal encephalopathy accounts for the largest number of deaths in infancy and childhood – approximately 1 million per year worldwide. Neonatal encephalopathy is associated with significant morbidity and mortality and is an important predictor of long term neurodevelopmental disability in near- and full-term newborn infants. Fifteen to 20 percent of infants with neonatal encephalopathy die in the neonatal period, and a further 25 percent have permanent neurologic deficits.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nelson, KB, Leviton, A. How much of neonatal encephalopathy is due to birth asphyxia? Am J Dis Child 1991; 145: 1325–331.Google ScholarPubMed
2Evans, K, Rigby, AS, Hamilton, P, Titchiner, N, Hall, DM. The relationships between neonatal encephalopathy and cerebral palsy: a cohort study. J Obstet Gynaecol 2001; 21: 114–20.CrossRefGoogle ScholarPubMed
3Lawn, JE, Wilczynska-Ketende, K, Cousens, SN. Estimating the causes of 4 million neonatal deaths in the year 2000. Int J Epidemiol 2006; 35: 706–18.Google Scholar
4Volpe, JJ. Neurology of the newborn. 4th ed. W.B. Saunders Company, Philadelphia 2001; 331–94.Google Scholar
5Edwards, AD, Nelson, KB. Neonatal encephalopathies. Time to reconsider the cause of encephalopathies. Br Med J 1998; 317: 1537–538.CrossRefGoogle ScholarPubMed
6Badawi, N, Kurinczuk, JJ, Keogh, JM, Alessandri, LM, O'Sullivan, F, Burton, PR et al. Intrapartum risk factors for newborn encephalopathy: the Western Australian case-control study [see comments]. Br Med J 1998; 317: 15541558.CrossRefGoogle ScholarPubMed
7Badawi, N, Kurinczuk, JJ, Keogh, JM, Alessandri, LM, O'Sullivan, F, Burton, PR et al. Antepartum risk factors for newborn encephalopathy: the Western Australian case-control study. Br Med J 1998; 317: 1549–553.CrossRefGoogle ScholarPubMed
8Okereafor, A, Allsop, J, Counsell, SJ, Fitzpatrick, J, Azzopardi, D, Rutherford, MA et al. Patterns of brain injury in neonates exposed to perinatal sentinel events. Pediatrics 2008; 121: 906–14.Google Scholar
9Blume, HK, Li, CI, Loch, CM, Koepsell, TD. Intrapartum fever and chorioamnionitis as risks for encephalopathy in term newborns: a case-control study. Dev Med Child Neurol 2008; 50: 1924.CrossRefGoogle ScholarPubMed
10Cowan, F, Rutherford, M, Groenendaal, F, Eken, P, Mercuri, E, Bydder, GM et al. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003; 361: 736–42.CrossRefGoogle ScholarPubMed
11Rutherford, M, Srinivasan, L, Dyet, L, Ward, P, Allsop, J, Counsell, S et al. Magnetic resonance imaging in perinatal brain injury: clinical presentation, lesions and outcome. Pediatr Radiol 2006; 36: 582–92.CrossRefGoogle ScholarPubMed
12Ferriero, DM. Neonatal brain injury. N Engl J Med 2004; 351: 1985–995.Google Scholar
13Perlman, JM. Brain injury in the term infant. Semin Perinatol 2004; 28: 415–24.CrossRefGoogle ScholarPubMed
14Grow, J, Barks, JD. Pathogenesis of hypoxic-ischemic cerebral injury in the term infant: current concepts. Clin Perinatol 2002; 29: 585602.CrossRefGoogle ScholarPubMed
15Toet, MC, Lemmers, PM, van Schelven, LJ, van Bel, F. Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 2006; 117: 333–39.Google Scholar
16Roth, SC, Edwards, AD, Cady, EB, Delpy, DT, Wyatt, JS, Azzopardi, D et al. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev Med Child Neurol 1992; 34: 285–95.CrossRefGoogle ScholarPubMed
17Ilves, P, Lintrop, M, Metsvaht, T, Vaher, U, Talvik, T. Cerebral blood-flow velocities in predicting outcome of asphyxiated newborn infants. Acta Paediatr 2004; 93: 523–28.CrossRefGoogle ScholarPubMed
18Thoresen, M, Penrice, J, Lorek, A, Cady, EB, Wylezinska, M, Kirkbride, V et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 1995; 37: 667–70.CrossRefGoogle ScholarPubMed
19Gunn, AJ, Gunn, TR, Gunning, MI, Williams, CE, Gluckman, PD. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998; 102: 1098–106.Google Scholar
20Penrice, J, Amess, PN, Punwani, S, Wylezinska, M, Tyszczuk, L, D'Souza, P et al. Magnesium sulfate after transient hypoxia-ischemia fails to prevent delayed cerebral energy failure in the newborn piglet. Pediatr Res 1997; 41: 443–47.Google Scholar
21Rutherford, M, Ward, P, Allsop, J, Malamatentiou, C, Counsell, S. Magnetic resonance imaging in neonatal encephalopathy. Early Hum Dev 2005; 81: 1325.Google Scholar
22Taylor, DL, Edwards, AD, Mehmet, H. Oxidative metabolism, apoptosis and perinatal brain injury. Brain Pathol 1999; 9: 93117.CrossRefGoogle ScholarPubMed
23Northington, FJ, Zelaya, ME, O'Riordan, DP, Blomgren, K, Flock, DL, Hagberg, H et al. Failure to complete apoptosis following neonatal hypoxia-ischemia manifests as “continuum” phenotype of cell death and occurs with multiple manifestations of mitochondrial dysfunction in rodent forebrain. Neuroscience 2007; 149: 822–33.CrossRefGoogle ScholarPubMed
24Northington, FJ, Ferriero, DM, Graham, EM, Traystman, RJ, Martin, LJ. Early Neurodegeneration after Hypoxia-Ischemia in Neonatal Rat Is Necrosis while Delayed Neuronal Death Is Apoptosis. Neurobiol Dis 2001; 8: 207–19.CrossRefGoogle ScholarPubMed
25Hotchkiss, RS, Strasser, A, McDunn, JE, Swanson, PE. Cell death. N Engl J Med 2009; 361: 1570–583.CrossRefGoogle ScholarPubMed
26Sarnat, HB, Sarnat, MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch Neurol 1976; 33: 696705.CrossRefGoogle ScholarPubMed
27Thompson, CM, Puterman, AS, Linley, LL, Hann, FM, van der Elst, CW, Molteno, CD et al. The value of a scoring system for hypoxic ischaemic encephalopathy in predicting neurodevelopmental outcome. Acta Paediatr 1997; 86: 757–61.CrossRefGoogle ScholarPubMed
28Marlow, N, Rose, AS, Rands, CE, Draper, ES. Neuropsychological and educational problems at school age associated with neonatal encephalopathy. Arch Dis Child Fetal Neonatal Ed 2005; 90: F380F387.CrossRefGoogle ScholarPubMed
29Toet, MC, Hellstrom-Westas, L, Groenendaal, F, Eken, P, de Vries, LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 1999; 81: F19F23.Google Scholar
30Al Naqueeb, N, Edwards, AD, Cowan, F, Azzopardi, D. Assessment of neonatal encepalopathy by amplitude integrated electroencephalography. Pediatrics 1999; 103: 1263–271.CrossRefGoogle Scholar
31Toet, MC, van der, MW, de Vries, LS, Uiterwaal, CS, van Huffelen, KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics 2002; 109: 772–79.Google Scholar
32Taylor, MJ, Murphy, WJ, Whyte, HE. Prognostic reliability of somatosensory and visual evoked potentials of asphyxiated term infants. Dev Med Child Neurol 1992; 34: 507–15.Google Scholar
33Cheong, JL, Cady, EB, Penrice, J, Wyatt, JS, Cox, IJ, Robertson, NJ. Proton MR spectroscopy in neonates with perinatal cerebral hypoxic-ischemic injury: metabolite peak-area ratios, relaxation times, and absolute concentrations. AJNR Am J Neuroradiol 2006; 27: 1546–554.Google Scholar
34Robertson, NJ, Lewis, RH, Cowan, FM, Allsop, JM, Counsell, SJ, Edwards, AD et al. Early increases in brain myo-inositol measured by proton magnetic resonance spectroscopy in term infants with neonatal encephalopathy. Pediatr Res 2001; 50: 692700.Google Scholar
35Amiel-Tison, C. Update of the Amiel-Tison neurologic assessment for the term neonate or at 40 weeks corrected age. Pediatr Neurol 2002; 27: 196212.Google Scholar
36Dubowitz, L, Ricciw, D, Mercuri, E. The Dubowitz neurological examination of the full-term newborn. Ment Retard Dev Disabil Res Rev 2005; 11: 5260.CrossRefGoogle ScholarPubMed
37Ricci, D, Guzzetta, A, Cowan, F, Haataja, L, Rutherford, M, Dubowitz, L et al. Sequential neurological examinations in infants with neonatal encephalopathy and low apgar scores: relationship with brain MRI. Neuropediatrics 2006; 37: 148–53.CrossRefGoogle ScholarPubMed
38Einspieler, C, Prechtl, HF, Ferrari, F, Cioni, G, Bos, AF. The qualitative assessment of general movements in preterm, term and young infants–review of the methodology. Early Hum Dev 1997; 50: 4760.CrossRefGoogle Scholar
39Thoresen, M, Penrice, J, Lorek, A, Cady, EB, Wylezinska, M, Kirkbride, V et al. Mild hypothermia after severe transient hypoxia-ischemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr Res 1995; 37: 667–70.Google Scholar
40Edwards, AD, Yue, X, Squier, MV, Thoresen, M, Cady, EB, Penrice, J et al. Specific inhibition of apoptosis after cerebral hypoxia-ischaemia by moderate post-insult hypothermia. Biochem Biophys Res Commun 1995; 217: 1193–199.CrossRefGoogle ScholarPubMed
41Azzopardi, DV, Strohm, B, Edwards, AD, Dyet, L, Halliday, HL, Juszczak, E et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009; 361: 1349–358.Google Scholar
42Gluckman, PD, Wyatt, JS, Azzopardi, D, Ballard, R, Edwards, AD, Ferriero, DM et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet 2005; 365: 663670.CrossRefGoogle ScholarPubMed
43Shankaran, S, Laptook, AR, Ehrenkranz, RA, Tyson, JE, McDonald, SA, Donovan, EF et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353: 1574–584.CrossRefGoogle ScholarPubMed
44Jacobs, SE, Stewart, M, Inder, T, Doyle, LW, Morley, CJ. ICE The Australian cooling trial for hypoxic-ischemic encephalopathy – in hospital outcomes. Conference proceedings Hot Topics in Neonatology, Washington. 2008.Google Scholar
45Simbruner, G, Mittal, R, Rohlman, F, Muche, R. European neo.nNeuro.network Trial. Conference proceedings Hot Topics in Neonatology, Washington. 2008.Google Scholar
46Edwards, AD, Brocklehurst, P, Gunn, AJ, Halliday, H, Juszczak, E, Levene, M et al. Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. Br Med J 2010; 340: c363.CrossRefGoogle ScholarPubMed
47Rutherford, M, Ramenghi, LA, Edwards, AD, Brocklehurst, P, Halliday, H, Levene, M et al. Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 2010; 9: 3945.Google Scholar
48Robertson, NJ, Nakakeeto, M, Hagmann, C, Cowan, FM, Acolet, D, Iwata, O et al. Therapeutic hypothermia for birth asphyxia in low-resource settings: a pilot randomised controlled trial. Lancet 2008; 372: 801803.Google Scholar
49Higgins, RD, Raju, TN, Perlman, J, Azzopardi, DV, Blackmon, LR, Clark, RH et al. Hypothermia and perinatal asphyxia: executive summary of the National Institute of Child Health and Human Development workshop. J Pediatr 2006; 148: 170–75.CrossRefGoogle ScholarPubMed
50Azzopardi, D, Strohm, B, Edwards, AD, Halliday, H, Juszczak, E, Levene, MI et al. Treatment Of Asphyxiated Newborns With Moderate Hypothermia In Routine Clinical Practice: How Cooling Is Managed In The UK Outside A Clinical Trial. Arch Dis Child Fetal Neonatal Ed 2008; 94: F26064.CrossRefGoogle ScholarPubMed
51Dinse, A, Fohr, KJ, Georgieff, M, Beyer, C, Bulling, A, Weigt, HU. Xenon reduces glutamate-, AMPA-, and kainate-induced membrane currents in cortical neurones. Br J Anaesth 2005; 94: 479–85.CrossRefGoogle ScholarPubMed
52Ma, D, Lim, T, Xu, J, Tang, H, Wan, Y, Zhao, H et al. Xenon preconditioning protects against renal ischemic-reperfusion injury via HIF-1alpha activation. J Am Soc Nephrol 2009; 20: 713–20.Google Scholar
53Dingley, J, Tooley, J, Porter, H, Thoresen, M. Xenon provides short-term neuroprotection in neonatal rats when administered after hypoxia-ischemia. Stroke 2006; 37: 501506.Google Scholar
54Ma, D, Hossain, M, Chow, A, Arshad, M, Battson, RM, Sanders, RD et al. Xenon and hypothermia combine to provide neuroprotection from neonatal asphyxia. Ann Neurol 2005; 58: 182–93.Google Scholar
55Thoresen, M, Hobbs, CE, Wood, T, Chakkarapani, E, Dingley, J. Cooling combined with immediate or delayed xenon inhalation provides equivalent long-term neuroprotection after neonatal hypoxia-ischemia. J Cereb Blood Flow Metab 2009; 29: 707–14.CrossRefGoogle ScholarPubMed
56Zhu, C, Kang, W, Xu, F, Cheng, X, Zhang, Z, Jia, L et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic-ischemic encephalopathy. Pediatrics 2009; 124: e218e226.Google Scholar
57Rouse, DJ, Hirtz, DG, Thom, E, Varner, MW, Spong, CY, Mercer, BM et al. A randomized, controlled trial of magnesium sulfate for the prevention of cerebral palsy. N Engl J Med 2008; 359: 895905.CrossRefGoogle ScholarPubMed
58Bhat, MA, Charoo, BA, Bhat, JI, Ahmad, SM, Ali, SW, Mufti, MU. Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics 2009; 123: e764e769.Google Scholar