Article contents
TEMPERATURE AND DROUGHT STRESS EFFECTS ON GROWTH AND DEVELOPMENT OF BAMBARA GROUNDNUT (VIGNA SUBTERRANEA L.)
Published online by Cambridge University Press: 26 June 2013
Summary
The effect of drought and temperature on the growth and development of bambara groundnut (Vigna subterranea (L.) Verdc.) was studied in controlled environment glasshouses in the United Kingdom. There were two landraces, S19-3 (from a hot, dry environment; Namibia) and Uniswa Red (from a cool, wet environment; Swaziland), two temperature regimes (23 °C and 33 °C) and three watering regimes (2006; fully irrigated), 2007 (drought imposed at 77 days after sowing (DAS)) and 2008 (drought imposed at 30 DAS)). Bambara groundnut responded to drought by slowing the rate of leaf area expansion and reducing final canopy size and total dry matter (TDM). Drought also caused significant reductions in pod dry matter, pod numbers and harvest index (HI), leading to a decrease in final yield that was different between landraces. Throughout the three growing seasons, landraces grown at 33 °C produced more TDM than the landraces grown at 23 °C. The two landraces differed in their phenology; S19-3 exhibited a reduced phenology where leaf numbers started to decrease before Uniswa Red at both temperatures, while Uniswa Red maintained the longest life cycle. The lowest pod yield was produced by Uniswa Red in 2008 at 33 °C (maximum of 35.5 gm−2), while S19-3 produced a minimum pod yield of 56.6 gm−2 at 33 °C, also in 2008. However, both landraces produced considerably more pod yield at 23 °C throughout the three growing seasons (minimum of 151 gm−2 and 162 gm−2 for Uniswa Red and S19-3, respectively). Under moderate drought, S19-3 at 33 °C gave the highest pod yield (365 gm−2) among the treatments throughout the three growing seasons and maintained HI better under drought. Despite being from a hot, dry environment, S19-3 also performed well at low temperature, which indicates the adaptation of S19-3 to low temperature that it also experiences in the country of origin.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
REFERENCES
- 11
- Cited by