Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T00:06:56.876Z Has data issue: false hasContentIssue false

From almost sure local regularity to almost sure Hausdorffdimension for Gaussian fields

Published online by Cambridge University Press:  08 October 2014

Erick Herbin
Affiliation:
Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France. [email protected]; [email protected]; [email protected]
Benjamin Arras
Affiliation:
Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France. [email protected]; [email protected]; [email protected]
Geoffroy Barruel
Affiliation:
Ecole Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France. [email protected]; [email protected]; [email protected]
Get access

Abstract

Fine regularity of stochastic processes is usually measured in a local way by localHölder exponents and in a global way by fractal dimensions. In the case of multiparameterGaussian random fields, Adler proved that these two concepts are connected under theassumption of increment stationarity property. The aim of this paper is to consider thecase of Gaussian fields without any stationarity condition. More precisely, we prove thatalmost surely the Hausdorff dimensions of the range and the graph in any ballB(t0)are bounded from above using the local Hölder exponent at t0. We definethe deterministic local sub-exponent of Gaussian processes, which allows to obtain analmost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of thesample path on an open interval are controlled almost surely by the minimum of the localexponents. Then, we apply these generic results to the cases of the set-indexed fractionalBrownian motion on RN, the multifractionalBrownian motion whose regularity function H is irregular and the generalized Weierstrassfunction, whose Hausdorff dimensions were unknown so far.

Type
Research Article
Copyright
© EDP Sciences, SMAI 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R.J., Hausdorff Dimension and Gaussian fields. Ann. Probab. 5 (1977) 145151. Google Scholar
R.J. Adler and J.E. Taylor, Random Fields and Geometry. Springer (2007).
Ayache, A. and Lévy Véhel, J., Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233238. Google Scholar
A. Ayache, N.-R. Shieh and Y. Xiao, Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011).
Ayache, A. and Xiao, Y., Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl. 11 (2005) 407439. Google Scholar
Baraka, D., Mountford, T. and Xiao, Y., Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125152. Google Scholar
Benassi, A., Cohen, S. and Istas, J., Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267272. Google Scholar
Benassi, A., Jaffard, S. and Roux, D., Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 1990. Google Scholar
Berman, S.M., Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 6386. Google Scholar
Boufoussi, B., Dozzi, M. and Guerbaz, R., Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849867. Google Scholar
Dudley, R.M., Sample Functions of the Gaussian Process. Ann. Probab. 1 (1973) 66103. Google Scholar
K. Falconer, Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003).
Herbin, E., From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 12491284. Google Scholar
E. Herbin, Locally Asymptotic Self-similarity and Hölder Regularity. In preparation.
Herbin, E. and Merzbach, E., A set-indexed fractional Brownian motion. J. Theoret. Probab. 19 (2006) 337364. Google Scholar
E. Herbin and E. Merzbach, The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006).
Herbin, E. and Lévy-Véhel, J., Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119 (2009) 22772311. Google Scholar
Hunt, B., The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791800. Google Scholar
J.-P. Kahane, Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985).
D. Khoshnevisan, Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002).
Khoshnevisan, D. and Xiao, Y., Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841878. Google Scholar
Lawler, G.F. and Viklund, F.J., Optimal Hölder exponent for the SLE path. Duke Math. J. 159 (2011) 351383. Google Scholar
M. Ledoux and M. Talagrand, Probability in Banach Spaces. Springer (1991).
Lind, J.R., Hölder regularity of the SLE trace. Trans. Amer. Math. Soc. 360 (2008) 35573578. Google Scholar
L. Liu, Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010).
M.B. Marcus and J. Rosen, Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006).
Meerschaert, M.M., Wang, W. and Xiao, Y., Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365 (2013) 10811107. Google Scholar
Meerschaert, M., Wu, D. and Xiao, Y., Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865898. Google Scholar
Orey, S. and Pruitt, W.E., Sample functions of the N-parameter Wiener process. Ann. Probab. 1 (1973) 138163. Google Scholar
R.F. Peltier and J. Lévy-Véhel, Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39.
Pruitt, W., The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371378. Google Scholar
Stoev, S. and Taqqu, M., How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl. 116 (2006) 200221. Google Scholar
Strassen, V., An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 211226. Google Scholar
Taylor, S.J., The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc. 51 (1955) 265274. Google Scholar
Tudor, C.A. and Xiao, Y., Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 10231052. Google Scholar
Wu, D. and Xiao, Y., Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 137. Google Scholar
Xiao, Y., Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23 (1995) 273291. Google Scholar
Y. Xiao, Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145–212. CrossRef
Xiao, Y., On uniform modulus of continuity of random fields. Monatsh. Math. 159 (2010) 163184. Google Scholar
Yadrenko, M.I., Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233245. Google Scholar
Yoder, L., The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169171, 1975. Google Scholar