Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T03:03:36.291Z Has data issue: false hasContentIssue false

Palaeophysiology of terrestrialisation in the Chelicerata

Published online by Cambridge University Press:  03 November 2011

Paul A. Selden
Affiliation:
Department of Extra-Mural Studies, University of Manchester, Manchester M13 9PL, U.K.
Andrew J. Jeram
Affiliation:
Department of Geology, University of Manchester, Manchester M13 9PL, U.K.

Abstract

The wide range of organs of respiration (book-gills, book-lungs, sieve- and tube-tracheae), reproduction, sensory perception, etc., among the chelicerates indicates that the major groups made the transition to land life independently. The fossil record is patchy for most chelicerate groups, certain intervals (e.g. Westphalian) being particularly rich in chelicerate bearing Lagerstatten while in others (e.g. Mesozoic) they are sparse. Due, apparently, to their unusual hyaline exocuticle, scorpions are better preserved than other arthropods, and show a fairly continuous record from fully aquatic forms in the Silurian, to both aquatic and terrestrial faunas in the Carboniferous. In particular, new and well-preserved material of the earliest demonstrably terrestrial scorpions from the Lower Carboniferous of East Kirkton, West Lothian, suggests that book-lungs, at least in the scorpions, developed directly from book-gills by suturing of the covering plate (Blattfuss of the related eurypterids) to leave stigmata for diffusion of air. This evidence supports the ideas of early authors that the scorpion mesosomal ‘sternites’ are fused plates, contra Kjellesvig-Waering (1986) who envisaged the plates being lost to reveal true sternites beneath. The fossil evidence also indicates that by the Triassic at least two scorpion lineages had evolved intra-‘sternite’ stigmata.

Type
Physiological adaptations in some recent and fossil organisms
Copyright
Copyright © Royal Society of Edinburgh 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartram, K. M., Jeram, A. J. & Selden, P. A. 1987. Arthropod cuticles in coal. J GEOL SOC LONDON 144, 513–7.CrossRefGoogle Scholar
Bergström, J. 1979. Morphology of fossil arthropods as a guide to phylogenetic relationships. In Gupta, A. P. (ed.) Arthropod Phytogeny, 356. New York: Van Nostrand Reinhold.Google Scholar
Bergström, J. 1981. Morphology and systematics of early arthropods. ABH NATURWISS VER HAMBURG 23, 742.Google Scholar
Bergstrom, J., Stürmer, W. & Winter, G. 1980. Palaeoisopus, Palaeopantopus and Palaeothea, pycnogonid arthropods from the Lower Devonian Hunsrück Slate, West Germany. PALAEONTOL Z 54, 754.CrossRefGoogle Scholar
Boudreaux, H. B. 1979. Significance of intersegmental tenon system in arthropod phylogeny and a monophyletic classification of Arthropoda. In Gupta, A. P. (ed.) Arthropod Phylogeny, 551–86. New York: Van Nostrand Reinhold.Google Scholar
Brauckmann, C. 1987. Neue Arachniden-Funde (Scorpionida, Trigonotarbida) aus dem westdeutschen Unter-Devon. GEOL PALAEONTOL 21, 7385.Google Scholar
Briggs, D. E. G. & Collins, D. 1988. A Middle Cambrian chelicerate from Mount Stephen, British Columbia. PALAEONTOLOGY 31, 779–98.Google Scholar
Campbell, K. S. & Barwick, R. E. 1988. Geological and palaeontological information and phylogenetic hypotheses. GEOL MAG 125, 207–27.Google Scholar
Claridge, M. F. & Lyon, A. G. 1961. Lung-books in the Devonian Palaeocharinidae (Arachnida). NATURE 191, 1190–1.CrossRefGoogle Scholar
Cloudsley-Thompson, J. L. 1976. Evolutionary Trends in the Mating of Arthropoda. Shildon, Co. Durham: Meadowfield.Google Scholar
Dalingwater, J. E. 1985. Biomechanical approaches to eurypterid cuticles and chelicerate exoskeletons. TRANS R SOC EDINBURGH EARTH SCI 76, 359–64.Google Scholar
Dalingwater, J. E. 1987. Chelicerate cuticle structure. In Nentwig, W. (ed.) Ecophysiology of Spiders, 315. Berlin: Springer.CrossRefGoogle Scholar
Filshie, B. K. & Hadley, N. F. 1979. Fine structure of the cuticle of the Desert Scorpion, Hadrurus arizonensis. TISSUE CELL 11, 249–62.CrossRefGoogle ScholarPubMed
Fleissner, G., 1975. A new biological function of the scorpion's lateral eyes as receptors of Zeit-geber stimuli. PROG 6TH INT ARACHNOL CONGR 1974, 176–82.Google Scholar
Gall, J.-C. 1971. Faunes et paysages du Grès è Voltzia du Nord des Vosges. Essai Paléoécologique sur le Buntsandstein Supérieur. MEM SERV CARTE GEOL ALSACE LORRAINE 34, 1318.Google Scholar
Grasshoff, M. 1978. A model of the evolution of the main chelicerate groups. SYMP ZOOL SOC LONDON 42, 273–84.Google Scholar
Hammen, L. van der 1982. Comparative studies in Chelicerata II. Epimerata (Palpigradi and Anactinotrichida). ZOOL VERH LEIDEN 196, 170.Google Scholar
Hammen, L. van der 1985a. Functional morphology and affinities of extant Chelicerata in evolutionary perspective. TRANS R SOC EDINBURGH EARTH SCI 76, 137–46.Google Scholar
Hammen, L. van der 1985b. Comparative studies in Chelicerata III. Opilionida. ZOOL VERH 220, 160.Google Scholar
Hammen, L. van der 1986. On some aspects of parallel evolution in Chelicerata. ACTA BIOTHEORETICA 35, 1537.Google Scholar
Hinton, H. E. 1971. Plastron respiration in the mite. Platyseius italicus. J INSECT PHYSIOL 17, 1185–99.Google Scholar
Kennaugh, J. H. 1959. An examination of the cuticles of two scorpions, Pandinus imperator and Scorpiops hardwickii. Q J MICROSC SCI 100, 4150.Google Scholar
Kjellesvig-Waering, E. N. 1972. Brontoscorpio anglicus: a gigantic Lower Palaeozoic scorpion from central England. J PALEONTOL 46, 3942.Google Scholar
Kjellesvig-Waering, E. N. 1986. A restudy of the fossil Scorpionida of the world. PALAEONTOGR AM 55, 1287.Google Scholar
Kraus, O. 1976. Zur phylogenetische Stellung und Evolution der Chelicerata. ENTOMOL GERM 3, 112.Google Scholar
Laurie, M. 1893. The anatomy and relations of the Eurypteridae. TRANS R SOC EDINBURGH 37, 509–28.CrossRefGoogle Scholar
Little, C. 1983. The Colonisation of Land. Cambridge: Cambridge University Press.Google Scholar
Manton, S. M. 1964. Mandibular mechanisms and the evolution of arthropods. PHILOS TRANS R SOC LONDON B247, 1183.Google Scholar
Manton, S. M. 1977. The Arthropoda: Habits, Functional Morphology, and Evolution. Oxford: Oxford University Press.Google Scholar
Milner, A. R. 1985. Scottish window on terrestrial life in the Lower Carboniferous. NATURE 314, 320–1.Google Scholar
Monniot, F. 1966. Un palpigrade interstitiel: Leptokoenenia scurra n. sp. REV ECOL BIOL SOL 3, 4164.Google Scholar
Moore, P. F. 1941. On gill-like structures in the Eurypterida. GEOL MAG 78, 6270.Google Scholar
Paulus, H. F. 1979. Eye structure and the monophyly of Arthropoda. In Gupta, A. P. (ed.) Arthropod Phytogeny, 299383. New York: Van Nostrand Reinhold.Google Scholar
Platnick, N. I. 1986. Seminar: Establishment of phyletic seriations. ACTAS X CONGR INT ARACNOL 1986 2, 55–7.Google Scholar
Pugh, P. J. A., King, P. E. & Fordy, M. R. 1987a. Structural features associated with respiration in some intertidal Uropodina (Acarina: Mesostigmata). J ZOOL LONDON 211, 107–20.CrossRefGoogle Scholar
Pugh, P. J. A., King, P. E. & Fordy, M. R. 1987b. The structure and probable function of the peritreme in intertidal Gamasina (Acarina: Mesostigmata). ZOOL J LINN SOC 89, 393407.CrossRefGoogle Scholar
Pugh, P. J. A., King, P. E. & Fordy, M. R. 1987c. A comparison of the structure and function of the cerotegument in two species of Cryptostigmata (Acarina). J NAT HIST 21, 603–16.CrossRefGoogle Scholar
Raven, J. A. 1985. Comparative physiology of plant and arthropod land adaptation. PHILOS TRANS R SOC LONDON B309, 273–88.Google Scholar
Reissland, A. & Görner, P. 1985. Trichobothria. In Barth, F. G. (ed.) Neurobiology of Arachnids, 138–61. Berlin: Springer.Google Scholar
Rolfe, W. D. I. 1980. Early invertebrate terrestrial faunas. In Panchen, A. L. (ed.) The Terrestrial Environment and the Origin of Land Vertebrates, 117–57. London: Academic Press.Google Scholar
Rolfe, W. D. I. 1985. Early terrestrial arthropods: a fragmentary record. PHILOS TRANS R SOC LONDON B309, 207–18.Google Scholar
Rolfe, W. D. I. & Beckett, C. M. 1984. Autecology of Silurian Xiphosurida, Scorpionida, and Phyllocarida. In Bassett, M. G. & Lawson, J. D. (eds) Autecology of Silurian Organisms. SPEC PAP PALAEONTOL 32, 2737.Google Scholar
Schaller, F. 1979. Indirect sperm transfer by soil arthropods. ANN REV ENTOMOL 16, 407–46.CrossRefGoogle Scholar
Selden, P. A. 1981. Functional morphology of the prosoma of Baltoeurypterus tetragonophthalmus (Fischer) (Chelicerata: Eurypterida). TRANS R SOC EDINBURGH 72, 948.Google Scholar
Selden, P. A. 1984. Autecology of Silurian eurypterids. In Bassett, M. G. & Lawson, J. D. (eds) Autecology of Silurian Organisms. SPEC PAP PALAEONTOL 32, 3954.Google Scholar
Selden, P. A. 1985. Eurypterid respiration. PHILOS TRANS R SOC LONDON B309, 219–26.Google Scholar
Selden, P. A. & Edwards, D. E. (in press). Colonization of the land. In Allen, K. C. & Briggs, D. E. G. (eds) Evolution and Palaeontology. London: Pinter.Google Scholar
Shear, W. A., Selden, P. A., Rolfe, W. D. I., Bonamo, P. M. & Grierson, J. D. 1987. New terrestrial arachnids from the Devonian of Gilboa, New York (Arachnida, Trigonotarbida). AM MUS NOVITATES 2901, 174.Google Scholar
Størmer, L. 1963. Gigantoscorpio willsi, a new scorpion from the Lower Carboniferous of Scotland and its associated preying microorganisms. SKR NOR VIDENSK-AKAD MATNATURVIDENSK KL 1963 8, 1171.Google Scholar
Størmer, L. 1970. Arthropods from the Lower Devonian (Lower Emsian) of Alken-an-der-Mosel, Germany. Part 1. Arachnida. SENCKENBERGIANA LETHAEA 51, 335–69.Google Scholar
Størmer, L. 1976. Arthropods from the Lower Devonian (Lower Emsian) of Alken-an-der-Mosel, Germany. Part 5: Myriapods and additional forms, with general remarks on fauna and problems regarding invasion of land by arthropods. SENCKENBERGIANA LETHAEA 57, 87183.Google Scholar
Ugolini, A., Carmignani, I. & Vannini, M. 1986. Mother-young relationship in Euscorpius: adaptive value of the larval permanence on the mother's back (Scorpiones, Chactidae). J ARACHNOL 14, 43–6.Google Scholar
Vachon, M. & Heyler, D. 1985. Description d'une nouvelle espece de scorpion: Buthiscorpius pescei (Stéphanien de Montceau-les-Mines, France). Remarques sur la classification des scorpions (Arachnida) du Carbonifère. BULL SOC HIST NAT AUTUN 113, 2947.Google Scholar
Vannini, M., Balzi, M., Becciolini, A., Carmignani, I. & Ugolini, A. 1985. Water exchange between mother and larvae in scorpions [Euscorpius flavicaudis]. EXPERIENTIA 41, 1620–1.Google Scholar
Vogel, B. R. & Durden, C. J. 1966. The occurrence of stigmata in a Carboniferous scorpion. J PALAEONTOL 40, 655–8.Google Scholar
Waterston, C. D. 1975. Gill structures in the Lower Devonian eurypterid Tarsopterella scotica. FOSSILS STRATA 4, 241–54.CrossRefGoogle Scholar
Weygoldt, P. 1980. Towards a cladistic classification of the Chelicerata. 8TH INT CONGR ARACHNOL 1980, 331–4.Google Scholar
Weygoldt, P. & Paulus, H. F. 1979. Untersuchungen zur Morphologie, Taxonomie und Phylogenie der Chelicerata. ZEIT ZOOL SYST EVOLUTIONSFORSCH 17, 85200.CrossRefGoogle Scholar
Williams, S. C. 1987. Scorpion bionomics. ANN REV ENTOMOL 32, 275295.Google Scholar
Wills, L. J. 1910. On the fossiliferous Lower Keuper rocks of Worcestershire, with descriptions of some of the plants and animals discovered therein. PROG GEOL ASSOC 21, 249331.Google Scholar
Wills, L. J. 1946. A monograph of British Triassic scorpions. PALAEONTOGR SOC MONOGR 437, 441, 1137.Google Scholar
Wills, L. J. 1960. The ventral anatomy of some Carboniferous ‘scorpions’. Part 2. PALAEONTOLOGY 3, 276332.Google Scholar
Wills, L. J. 1965. A supplement to Gerhard Holm's “Über die Organisation des Eurypterus fischeri Eichw.” with special reference to the organs of sight, respiration and reproduction. ARK ZOOL 18, 93145.Google Scholar