Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T14:16:33.118Z Has data issue: false hasContentIssue false

Non-connective K-theory via universal invariants

Published online by Cambridge University Press:  04 May 2011

Denis-Charles Cisinski
Affiliation:
Université Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, F-31062 Toulouse Cedex 9, France (email: [email protected])
Gonçalo Tabuada
Affiliation:
Departamento de Matemática e CMA, FCT-UNL Quinta da Torre, 2829-516 Caparica, Portugal (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article, we further the study of higher K-theory of differential graded (dg) categories via universal invariants, initiated in [G. Tabuada, Higher K-theory via universal invariants, Duke Math. J. 145 (2008), 121–206]. Our main result is the co-representability of non-connective K-theory by the base ring in the ‘universal localizing motivator’. As an application, we obtain for free higher Chern characters, respectively higher trace maps, from non-connective K-theory to cyclic homology, respectively to topological Hochschild homology.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2011

References

[BS01]Balmer, P. and Schlichting, M., Idempotent completion of triangulated categories, J. Algebra 236 (2001), 819834.CrossRefGoogle Scholar
[Bas68]Bass, H., Algebraic K-theory (W.A. Benjamin, 1968).Google Scholar
[BM08]Blumberg, A. and Mandell, M., Localization theorems in topological Hochschild homology and topological cyclic homology, arXiv:0802.3938.Google Scholar
[BK90]Bondal, A. and Kapranov, M., Framed triangulated categories, Mat. Sb. 181 (1990), 669683; Engl. transl. Math. USSR-Sb. 70, 93–107.Google Scholar
[BV03]Bondal, A. and Van den Bergh, M., Generators and representability of functors in commutative and noncommutative geometry, Moscow Math. J. 3 (2003), 137.CrossRefGoogle Scholar
[Bor94]Borceux, F., Handbook of categorical algebra, Vol. 2, Encyclopedia of Mathematics and its Applications, vol. 51 (Cambridge University Press, Cambridge, 1994).Google Scholar
[BF78]Bousfield, A. and Friedlander, E., Homotopy theory of Γ-spaces, spectra and bisimplicial sets, in Geometric applications of homotopy theory (Proc. conf., Evanston, IL, 1977, II), Lecture Notes in Mathematics, vol. 658 (Springer, Berlin, 1978), 80130.Google Scholar
[BK72]Bousfield, A. K. and Kan, D. M., Homotopy limits, completions, and localization, Lecture Notes in Mathematics, vol. 304 (Springer, 1972).CrossRefGoogle Scholar
[Cis03]Cisinski, D.-C., Images directes cohomologiques dans les catégories de modèles, Ann. Math. Blaise Pascal 10 (2003), 195244.CrossRefGoogle Scholar
[Cis08]Cisinski, D.-C., Propriétés universelles et extensions de Kan dérivées, Theory Appl. Categ. 20 (2008), 605649.Google Scholar
[Cis10]Cisinski, D.-C., Catégories dérivables, Bull. Soc. Math. France 138 (2010), 317393.CrossRefGoogle Scholar
[Cis10]Cisinski, D.-C., Invariance de la K-théorie par équivalences dérivées, J. K-Theory 6 (2010), 505546.CrossRefGoogle Scholar
[CN08]Cisinski, D. and Neeman, A., Additivity for derivator K-theory, Adv. Math. 217 (2008), 13811475.CrossRefGoogle Scholar
[Dri]Drinfeld, V., DG categories, in University of Chicago geometric Langlands seminar, notes available at http://www.math.utexas.edu/users/benzvi/GRASP/lectures/Langlands.html.Google Scholar
[Dri04]Drinfeld, V., DG quotients of DG categories, J. Algebra 272 (2004), 643691.CrossRefGoogle Scholar
[DS04]Dugger, D. and Shipley, B., K-theory and derived equivalences, Duke Math. J. 124 (2004), 587617.CrossRefGoogle Scholar
[DGM]Dundas, B., Goodwillie, T. and McCarthy, R., The local structure of algebraic K-theory,http://www.math.ntnu.no/∼dundas/indexeng.html.Google Scholar
[Hel88]Heller, A., Homotopy theories, Mem. Amer. Math. Soc. 71 (1988).Google Scholar
[Hel97]Heller, A., Stable homotopy theories and stabilization, J. Pure Appl. Algebra 115 (1997), 113130.CrossRefGoogle Scholar
[Hir03]Hirschhorn, P., Model categories and their localizations, Mathematical Surveys and Monographs, vol. 99 (American Mathematical Society, Providence, RI, 2003).Google Scholar
[HPS97]Hovey, M, Palmieri, J. and Strickland, N. P., Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997).Google Scholar
[Kar70]Karoubi, M., Foncteurs dérivés et K-théorie, in Séminaire Heidelberg–Saarbrücken–Strasbourg sur la K-théorie (1967/68), Lecture Notes in Mathematics, vol. 136 (Springer, Berlin, 1970), 107186.CrossRefGoogle Scholar
[Kel06]Keller, B., On differential graded categories, in International congress of mathematicians (Madrid), Vol. II (European Mathematical Society, Zürich, 2006), 151190.Google Scholar
[Kon05]Kontsevich, M., Non-commutative motives, in Talk at the institute for advanced study (October 2005), video available at http://video.ias.edu/Geometry-and-Arithmetic.Google Scholar
[Kon09]Kontsevich, M., Notes on motives in finite characteristic, in Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, Progress in Mathematics, vol. 270 (Birkhäuser Boston, Boston, MA, 2009), 213247.CrossRefGoogle Scholar
[Mal01]Maltsiniotis, G., Introduction à la théorie des dérivateurs (d’après Grothendieck), Preprint (2001), available at http://www.math.jussieu.fr/∼maltsin/textes.html.Google Scholar
[Nee01]Neeman, A., Triangulated categories, Annals of Mathematics Studies, vol. 148 (Princeton University Press, Princeton, NJ, 2001).CrossRefGoogle Scholar
[Ped84]Pedersen, E., On the K i-functors, J. Algebra 90 (1984), 481–475.CrossRefGoogle Scholar
[PW89]Pedersen, E. and Weibel, C., K-theory homology of spaces, in Algebraic topology (Arcata, CA, 1986), Lecture Notes in Mathematics, vol. 1370 (Springer, Berlin, 1989), 346361.CrossRefGoogle Scholar
[Qui67]Quillen, D., Homotopical algebra, Lecture Notes in Mathematics, vol. 43 (Springer, New York, 1967).CrossRefGoogle Scholar
[Ren09]Renaudin, O., Plongement de certaines théories homotopiques de Quillen dans les dérivateurs, J. Pure Appl. Algebra 213 (2009), 19161935.CrossRefGoogle Scholar
[Sch06]Schlichting, M., Negative K-theory of derived categories, Math. Z. 253 (2006), 97134.CrossRefGoogle Scholar
[Tab07]Tabuada, G., Théorie homotopique des DG categories, PhD thesis, Université Denis Diderot - Paris 7, arXiv:0710.4303.Google Scholar
[Tab08]Tabuada, G., Higher K-theory via universal invariants, Duke Math. J. 145 (2008), 121206.CrossRefGoogle Scholar
[Tab09]Tabuada, G., Homotopy theory of well-generated algebraic triangulated categories, J. K-Theory 3 (2009), 5375.CrossRefGoogle Scholar
[Tab10]Tabuada, G., Generalized spectral categories, topological Hochschild homology, and trace maps, Algebr. Geom. Topol. 10 (2010), 137213.CrossRefGoogle Scholar
[TT90]Thomason, R. and Trobaugh, T., Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift, Vol. III, Progress in Mathematics, vol. 88 (Birkhäuser, Boston, 1990), 247435.CrossRefGoogle Scholar
[Toe07]Toën, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (2007), 615667.CrossRefGoogle Scholar
[TV07]Toën, B. and Vaquié, M., Moduli of objects in dg-categories, Ann. Sci. Éc. Norm. Supér. (4) 40 (2007), 387444.CrossRefGoogle Scholar
[Wal85]Waldhausen, F., Algebraic K-theory of spaces, in Algebraic and geometric topology (New Brunswick, NJ, 1983), Lecture Notes in Mathematics, vol. 1126 (Springer, Berlin, 1985), 318419.CrossRefGoogle Scholar