Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:29:40.571Z Has data issue: false hasContentIssue false

Pathophysiology of Involuntary Emotional Expression Disorder

Published online by Cambridge University Press:  07 November 2014

Peter V. Rabins*
Affiliation:
Dr. Rabins is professor and vice chair for academic affairs and director of the Division of Geriatric and Neuropsychiatry in the Department of Psychiatry at, Johns Hopkins University School of Medicine, in Baltimore, Maryland
David B. Arciniegas
Affiliation:
Dr. Arciniegas is associate professor of psychiatry and neurology and director of the Neurobehavioral Disorders Program at the, University of Colorado School of Medicine, in Denver, Colorado, and co-medical director of the Brain Injury Rehabilitation Unit at HealthONE Spalding Rehabilitation Hospital, in Aurora, Colorado
*
Johns Hopkins University School of Medicine, 600 North Wolfe St, Baltimore, MD 21287. Tel: 410-955-6736; Fax:, 410-614-1094; Email:, [email protected]

Abstract

Extensive clinical experience and research suggest that a cortico-limbic-subcortico-thalamic-ponto-cerebellar network plays a significant role in the expression of human emotions. This network includes specific cerebral, cerebellar, and brainstem areas and their multiple projections/pathways, with activity modulated through serotonergic, dopaminergic, glutamatergic, and possibly sigma receptor neurotransmitter systems. Disruptions of regulatory and inhibitory mechanisms in the structure and function of this network likely constitute a pathophysiological basis for the crying and laughing episodes characteristic of involuntary emotional expression disorder. Pharmacologic interventions targeting the neurochemical modulators of the emotional expression systems may afford opportunities for symptom control among persons affected by this disorder.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cummings, JL, Arciniegas, DB, Brooks, BR, et al.Defining and diagnosing involuntary emotional expression disorder. CNS Spectr. 2006;11:17.CrossRefGoogle ScholarPubMed
2.Lang, PJ, Davis, M. Emotion, motivation, and the brain: Reflex foundations in animal and human research. Prog Brain Res. 2006;156:329.CrossRefGoogle ScholarPubMed
3.Anders, S, Lotze, M, Erb, M, Grodd, W, Birbaumer, N. Brain activity underlying emotional valence and arousal: a response-related fMRI study. Hum Brain Mapp. 2004;23:200209.CrossRefGoogle ScholarPubMed
4.Loeb, C, Poggio, GF. Neural substrates of memory, affective functions, and conscious experience. Adv Anat Embryol Cell Biol. 2002;166:1111.CrossRefGoogle ScholarPubMed
5.Posse, S, Fitzgerald, D, Gao, Ket al.Real-time fMRI of temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage. 2003;18:760768.CrossRefGoogle ScholarPubMed
6.El Falougy, H, Benuska, J. History, anatomical nomenclature, comparative anatomy and functions of the hippocampal formation. Bratisl Lek Listy. 2006;107:103106.Google ScholarPubMed
7.Sinha, R, Lacadie, C, Skudlarski, P, Wexler, BE. Neural circuits underlying emotional distress in humans. Ann N Y Acad Sci. 2004;1032:254257.CrossRefGoogle ScholarPubMed
8.Quirk, GJ, Gehlert, DR. Inhibition of the amygdala: key to pathological states? Ann N Y Acad Sci. 2003;985:263272.CrossRefGoogle ScholarPubMed
9.Davidson, RJ, Irwin, W. The functional neuroanatomy of emotion and affective style. Trends Cogn Sci. 1999;3:1121.CrossRefGoogle ScholarPubMed
10.Pelletier, M, Bouthillier, A, Levesque, J, et al.Separate neural circuits for primary emotions? Brain activity during self-induced sadness and happiness in professional actors. Neuroreport. 2003;14:11111116.CrossRefGoogle ScholarPubMed
11.Parvizi, J, Anderson, SW, Martin, CO, Damasio, H, Damasio, AR. Pathological laughter and crying. A link to the cerebellum. Brain. 2001;124:17081719.CrossRefGoogle ScholarPubMed
12.Zhu, JN, Yung, WH, Kwok-Chong, CB, Chan, YS, Wang, JJ. The cerebellar-hypothalamic circuits: potential pathways underlying cerebellar involvement in somatic-visceral integration. Brain Res Brain Res Rev. 2006;52:93106.CrossRefGoogle ScholarPubMed
13.Pilc, A, Nowak, G. GABAergic hypotheses of anxiety and depression: focus on GABA-B receptors. Drugs Today (Barc). 2005;41:755766.CrossRefGoogle ScholarPubMed
14.Nutt, D, Argyropoulos, S, Hood, S, Potokar, J. Generalized anxiety disorder: a comorbid disease. Eur Neuropsychopharmacol. 2006;16(suppl 2):S109S118.CrossRefGoogle ScholarPubMed
15.Bijl, D. The serotonin syndrome. Neth J Med. 2004;62:309313.Google ScholarPubMed
16.Lopez-Garcia, JA. Serotonergic modulation of spinal sensory circuits. Curr Top Med Chem. 2006;6:19871996.CrossRefGoogle ScholarPubMed
17.Abrams, JK, Johnson, PL, Hollis, JH, Lowry, CA. Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci. 2004;1018:4657.CrossRefGoogle ScholarPubMed
18.Halberstadt, AL, Balaban, CD. Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience. 2006;140:10671077.CrossRefGoogle ScholarPubMed
19.McKenna, JT, Vertes, RP. Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull. 2001;54:619630.CrossRefGoogle Scholar
20.Waselus, M, Galvez, JP, Valentino, RJ, Van Bockstaele, EJ. Differential projections of dorsal raphe nucleus neurons to the lateral septum and striatum. J Chem Neuroanat. 2006;31:233242.CrossRefGoogle Scholar
21.Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience. 2002;111:815835.CrossRefGoogle ScholarPubMed
22.Glickstein, SB, Schmauss, C. Dopamine receptor functions: lessons from knockout mice [corrected]. Pharmacol Ther. 2001;91:6383.CrossRefGoogle ScholarPubMed
23.O'Donnell, P. Dopamine gating of forebrain neural ensembles. Eur J Neurosci. 2003;17:429435.CrossRefGoogle ScholarPubMed
24.Spitzer, M, Neumann, M. Noise in models of neurological and psychiatric disorders. Int J Neural Syst. 1996;7:355361.CrossRefGoogle ScholarPubMed
25.Richelson, E. The pharmacology of antidepressants at the synapse: focus on newer compounds. J Clin Psychiatry. 1994;55:3441.Google ScholarPubMed
26.Zubieta, JK, Ketter, TA, Bueller, JA, et al.Regulation of human affective responses by anterior cingulate and limbic mu-opioid neurotransmission. Arch Gen Psychiatry. 2003;60:11451153.CrossRefGoogle ScholarPubMed
27.Su, TP, Hayashi, T. Understanding the molecular mechanism of sigma-1 receptors: towards a hypothesis that sigma-1 receptors are intracellular amplifiers for signal transduction. Curr Med Chem. 2003;10:20732080.CrossRefGoogle ScholarPubMed
28.Stahl, SM. Antidepressant treatment of psychotic major depression: potential role of the sigma receptor. CNS Spectr. 2005;10:319323.CrossRefGoogle ScholarPubMed
29.Arciniegas, DB, Lauterbach, EC, Anderson, KE, et al.The differential diagnosis of pseudobulbar affect (PBA). Distinguishing PBA among disorders of mood and affect. Roundtable monograph supplement. CNS Spectr. 2005;10:114.CrossRefGoogle Scholar
30.Panitch, HS, Thisted, RA, Smith, RA, et al.Randomized, controlled trial of dextromethorphan/quinidine for pseudobulbar affect in multiple sclerosis. Ann Neurol. 2006;59:780787.CrossRefGoogle ScholarPubMed
31.Wilson, SAK. Some problems in neurology. No. II. - Pathological laughing and crying. J Neurol Psychopathol. 1924;IV:299333.CrossRefGoogle Scholar
32.Tateno, A, Jorge, RE, Robinson, RG. Pathological laughing and crying following traumatic brain injury. J Neuropsychiatry Clin Neurosci. 2004;16:426434.CrossRefGoogle ScholarPubMed
33.Arciniegas, DB, Topkoff, J. The neuropsychiatry of pathologic affect: an approach to evaluation and treatment. Semin Clin Neuropsychiatry. 2000;5:290306.CrossRefGoogle ScholarPubMed
34.Lauterbach, EC, Schweri, MM. Amelioration of pseudobulbar affect by fluoxetine: possible alteration of dopamine-related pathophysiology by a selective serotonin reuptake inhibitor. J Clin Psychopharmacol. 1991;11:392393.CrossRefGoogle ScholarPubMed
35.Brooks, BR, Thisted, RA, Appel, SH, et al.Treatment of pseudobulbar affect in ALS with dextromethorphan/quinidine: a randomized trial. Neurology. 2004;63:13641370.CrossRefGoogle ScholarPubMed
36.Andersen, G, Ingeman-Nielsen, M, Vestergaard, K, Riis, JO. Pathoanatomic correlation between poststroke pathological crying and damage to brain areas involved in serotonergic neurotransmission. Stroke. 1994;25:10501052.CrossRefGoogle ScholarPubMed
37.Derex, L, Ostrowsky, K, Nighoghossian, N, Trouillas, P. Severe pathological crying after left anterior choroidal artery infarct. Reversibility with paroxetine treatment. Stroke. 1997;28:14641466.CrossRefGoogle ScholarPubMed
38.Murai, T, Barthel, H, Berrouschot, J, et al.Neuroimaging of serotonin transporters in post-stroke pathological crying. Psychiatry Res. 2003;123:207211.CrossRefGoogle ScholarPubMed
39.Kim, SW, Shin, IS, Kim, JM, Lim, SY, Yang, SJ, Yoon, JS. Mirtazapine treatment for pathological laughing and crying after stroke. Clin Neuropharmacol. 2005;28:249251.CrossRefGoogle ScholarPubMed
40.Mesulam, M. Attentional networks, confusional states, and neglect syndromes. In: Mesulam, M, eds. Principles of Behavioral and Cognitive Neurology. Oxford University Press; 2000:174256.CrossRefGoogle Scholar
41.Rogawski, MA. Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents--toward an understanding of their favorable tolerability. Amino Acids. 2000;19:133149.CrossRefGoogle ScholarPubMed
42.Narita, N, Hashimoto, K, Tomitaka, S, Minabe, Y. Interactions of selective serotonin reuptake inhibitors with subtypes of sigma receptors in rat brain. Eur J Pharmacol. 1996;307:117119.CrossRefGoogle ScholarPubMed
43.Klein, M, Musacchio, JM. High affinity dextromethorphan binding sites in guinea pig brain. Effect of sigma ligands and other agents. J Pharmacol Exp Ther. 1989;251:207215.Google ScholarPubMed
44.Tortella, FC, Pellicano, M, Bowery, NG. Dextromethorphan and neuromodulation: old drug coughs up new activities. Trends Pharmacol Sci. 1989;10:501507.CrossRefGoogle ScholarPubMed
45.Bermack, JE, Debonnel, G. The role of sigma receptors in depression. J Pharmacol Sci. 2005;97:317336.CrossRefGoogle ScholarPubMed
46.Yamamoto, H, Yamamoto, T, Sagi, N, et al.Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site. J Neurosci. 1995;15:731736.CrossRefGoogle ScholarPubMed