Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T21:48:31.449Z Has data issue: false hasContentIssue false

The Orientation of Ornithine and 6-Aminohexanoic Acid Adsorbed on Vermiculite from Polarized I.R. ATR Spectra

Published online by Cambridge University Press:  01 July 2024

M. Raupach
Affiliation:
C.S.I.R.O. Division of Soils, Glen Osmond, S. Australia 5064
L. J. Janik
Affiliation:
C.S.I.R.O. Division of Soils, Glen Osmond, S. Australia 5064
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Determinations of the molecular orientation of ornithine and 6-aminohexanoic acid on the surface of vermiculite using polarized i.r. attenuated total reflectance have shown that the ornithine molecules lay almost flat on the clay surface, except for a C–N bond projecting towards, and hydrogen bonded to, the surface. Ornithine formed two adjacent layers in the interlayer space, whereas 6-aminohexanoic acid formed only one layer. The terminal C-N bond of 6-aminohexanoic acid was at 46° to the surface, the plane of the carbon chain having a tilt of 34°, and the molecular axis sloped at 36° to the surface. The amino acids, thus orientated, were positioned in the interlayer space using van der Waals contact distances and hydrogen bond lengths obtained from i.r. spectra. The i.r. results agreed with two dimensional electron density projections. In the ornithine complex, some of the methylene groups were so close to the clay surface that interaction may have caused the marked reduction observed in the intensity of the C–H stretching vibrations.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

References

Bodor, G., Bednowitz, A. L. and Post, B. (1967) The crystal structure of ε-aminocaproic acid: Acta Cryst. 23, 482490.CrossRefGoogle Scholar
Brindley, G. W. (1970) Organic complexes of silicates. Mechanisms of formation: Reunion Hispano-Belga de Minerals de la Arcilla, Madrid, pp. 5566.Google Scholar
Chiba, A., Ueki, T., Ashida, T., Sasada, Y. and Kukudo, M. (1967) The crystal structure of L-ornithine hydrochloride: Acta Cryst. 22, 863870.CrossRefGoogle Scholar
Fornés, V., Rausell-Colom, J. A., Hidalgo, A. and Serratosa, J. M. (1973) Étude par spectroscopie infrarouge d'une réaction de condensation dans l'espace interlamellaire de la vermiculite: C.r. Acad. Sci. Paris, série B227, 635637.Google Scholar
Fripiat, J. J., Pennequin, M., Poncelet, G. and Cloos, P. (1969) Influence of the van der Waals force on the infrared spectra of short aliphatic alkylammonium cations held on montmorillonite: Clay Minerals 8, 119134.CrossRefGoogle Scholar
Kanamaru, F. and Vand, V. (1970) The crystal structure of a clay-organic complex of 6-amino hexanoic acid and vermiculite: Am. Miner. 55, 15501561.Google Scholar
Koetzle, T. F., Lehmann, M. S., Verbist, J. J. and Hamilton, W. C. (1972) Precision neutron diffraction structure determination of protein and nucleic acid components—VII. The crystal and molecular structure of the amino acid L-lysine mono-hydrochloride dihydrate: Acta Cryst. B28, 32073213.CrossRefGoogle Scholar
Mifsud, A., Fornés, V. and Rausell-Colom, J. A. (1970) Cationic complexes of vermiculite with L-ornithine: Reunion Hispano Belga de Minerales de la Arcilla, Madrid, pp. 121127.Google Scholar
Miyazawa, T. (1960) Normal vibrations of monosubstituted amides in the cis configuration and i.r. spectra of diketopiperizine: J. Mol. Spectrosc. 4, 155167.CrossRefGoogle Scholar
Norrish, K. (1973) Factors in the weathering of mica to vermiculite: Proc. 1972 Int. Clay Conf. pp. 417432.Google Scholar
Pitha, J. and Jones, R. N. (1968) Optimization methods for fitting curves to infrared band envelopes. Computer programs: NRC Bulletin No 12. National Research Council of Canada.Google Scholar
Raupach, M., Slade, P. G., Janik, L. and Radoslovich, E. W. (1975) A polarized infrared and X-ray study of lysinevermiculite: Clays & Clay Minerals 23, 181186.CrossRefGoogle Scholar
Rausell-Colom, J. A. and Fornés, V. (1974) Monodimensional Fourier analysis of some vermiculite-L-ornithine complexes: Am. Miner. 59, 790798.Google Scholar
Serratosa, J. M., Johns, W. D. and Shimoyama, A. (1970) I.r. study of alylammonium vermiculite complexes: Clays & Clay Minerals 18, 107113.CrossRefGoogle Scholar
Slade, P. G., Telleria, M. I. and Radoslovich, E. W. (1976) The structures of ornithine–vermiculite and 6-aminohexanoic acid–vermiculite: Clays & Clay Minerals 24, 134141.CrossRefGoogle Scholar
Suzuki, S., Shimanouchi, T. and Tsuboi, M. (1963) Normal vibrations of glycine and deuterated glycine molecules: Spectrochim. Acta 19, 11951208.CrossRefGoogle Scholar
Takenaka, T., Nogami, K., Gotoh, H. and Gotoh, R. (1971) Studies on built-up films by means of the polarized i.r. ATR spectrum—I. Built-up films of stearic acid: J. Colloid Interface Sci. 33, 395402.CrossRefGoogle Scholar
Theng, B. K. G. (1974) The Chemistry of Clay–Organic Reactions. Adam Hilger Ltd., London.Google Scholar
Tsuboi, M., Takenishi, T. and Nakamaru, A. (1963) Some characteristic frequencies of amino acids: Spectrochim. Acta 19, 271284.CrossRefGoogle Scholar
Wolfram, L. E. and Grasselli, J. G. (1970) An improved i.r. method for measuring structure and orientation in polymers: Appl. Spectrosc. 24, 263267.CrossRefGoogle Scholar