Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T03:16:14.975Z Has data issue: false hasContentIssue false

Thermal reactions of leadhillite Pb4SO4(CO3)2(OH)2

Published online by Cambridge University Press:  09 July 2018

A. E. Milodowski
Affiliation:
British Geological Survey, Geochemistry Directorate, Keyworth, Nottingham NG12 5GG
D. J. Morgan
Affiliation:
64-78 Gray's Inn Road. London WC1X 8NG

Abstract

Reactions undergone by leadhillite from the type locality on heating to 1000°C have been followed by DTA, TG, DSC, evolved gas analysis, continuous-heating XRD and IR, and hot-stage microscopy. Intermediate decomposition products were identified by X-ray powder photography. At 80°C, biaxial leadhillite inverts to a uniaxial phase with properties similar to those of susannite, a naturally occurring polymorph of leadhillite, but this higher-temperature modification only partially reverts to the original structure on cooling (up to 24 hours at room temperature is required for complete reversion). Between 250 and 600°C the mineral undergoes two decomposition reactions: PbO.PbCO3 and PbO.PbSO4 form during the first reaction (PbCO3 may form in the initial stages) and 4PbO.PbSO4 during the second. α-2PbO.PbSO4 appears at 650°C due to solid-state reaction between the other lead oxysulphate products. Melting occurs above 850°C. The reaction products are discussed in relation to the phase diagrams for the systems PbO-CO2 and PbO-PbSO4.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ball, M.C. & Casson, M.J. (1975) Thermal studies on lead(II) salts-—I. Stoicheiometry of lead carbonate decomposition at 1 atm. pressure. J. Inorg. Nucl. Chem. 37, 22532255.CrossRefGoogle Scholar
Ball, M.C. & Casson, M.J. (1976a) Thermal studies on lead (II) salts. Part 3. The decomposition of laurionite, lead(II) hydroxide chloride. Thermochim. Acta 17, 361367.CrossRefGoogle Scholar
Ball, M.C. & Casson, M.J. (1976b) Thermal studies on lead (II) salts. Part 4. The thermal decomposition of phosgenite, lead chloride carbonate Pb2Cl2CO3 . Thermochim. Acta 17, 368371.CrossRefGoogle Scholar
Ball, M.C. & Casson, M.J. (1977) Thermal studies of lead(II) salts—II. The decomposition of lead hydroxide carbonate, Pb(OH)2. 2PbCO3 . J. Inorg. Nucl. Chem. 39, 19491951.CrossRefGoogle Scholar
Billhardt, H.W. (1970) New data on basic lead sulfates. J. Electroehem. Soc. (Solid State Sci.) 117, 690692.Google Scholar
Bugajska, M. & Karwan, T. (1979) Characteristics of the oxidation products of spherical samples of lead sulphide in the temperature range 773-1023 K. Thermochim. Acta 33, 4150.CrossRefGoogle Scholar
Gillanders, R.J. (1981) Famous mineral localities: the Leadhills-Wanlockhead district, Scotland. Mineral. Record 235-250.Google Scholar
Gray, N.B., Stump, N.W., Boundy, W.S. & Culver, R.V. (1967) The sulfation of lead sulfide. Trans. Metallurgical Soc. AIME 239, 18351840.Google Scholar
Grisafe, D.A. & White, W.B. (1964) Phase relations in the system PbO-CO2 and the decomposition of cerussite. Am. Miner. 49, 11841198.Google Scholar
Hoschek, G. (1962a) Die thermische Zersetzurg yon PbS in Luft. N. Jb. Mineral., Mh. 68-76.Google Scholar
Hoschek, G. (1962b) Die thermische Zersetzung der Sulfide und Sulfate sweiwertiger Kationen in Luft: Cu-, Zn-, Cd-, Hg-, Sn- und Pb-Verbindungen. Mh. Chem. 93, 826840.Google Scholar
Livingstone, A. & Sarp, H. (1984) Macphersonite, a new mineral from Leadhills, Scotland, and Saint-Prix, France—a polymorph of leadhillite and susannite. Mineral. Mag. 48, 277282.CrossRefGoogle Scholar
Morgan, D.J. (1977) Simultaneous DTA-EGA of minerals and natural mineral mixtures. J. Thermal Anal. 12, 245263.CrossRefGoogle Scholar
Mrose, M.E. & Christian, R.P. (1969) The leadhillite-susannite relation. Can. Mineral. 10, 141 (abstract only).Google Scholar
Nickless, G. (1968) Inorganic Sulphur Chemistry. Elsevier, Amsterdam & New York.Google Scholar
Pirsson, L.V. & Wells, H.L. (1894) On the occurrence of leadhillite in Missouri and its chemical composition. Am. J. Sci. 48, 219226.CrossRefGoogle Scholar
Rundle, L.M. (1974) A combustion method for the determination of total sulphur in limestones. Analyst 99, 163165.CrossRefGoogle Scholar
Russell, J.D., Milodowski, A.E., FRASER, A.R. & Clark, D.R. (1983) New IR and XRD data for leadhillite of ideal composition. Mineral. Mag. 47, 371375.CrossRefGoogle Scholar
Russell, J.D., Fraser, A.R. & Livingstone, A. (1984) The infrared absorption spectra of the three polymorphs of Pb4SO4(CO3)2(OH)2 (leadhillite, susannite and macphersonite). Mineral. Mag. 48, 295297.CrossRefGoogle Scholar
Stern, K.H. & Weise, E.L. (1966) High-temperature properties and decomposition of inorganic salts. Part 1. Sulfates. NSRDS-NBS 7. US Dept. of Commerce, Washington, USA.Google Scholar
Temple, A.K. (1956) The Leadhills-Wanlockhead lead and zinc deposits. Trans. Royal Soc. Edinburgh 63, 85113.CrossRefGoogle Scholar
Warne, S.ST.J. & Bayliss, P. (1962) The differential thermal analysis of cerussite. Am. Miner. 47, 10111023.Google Scholar
Yamaguchi, J., Sawada, Y., Sakurai, O., Uematsu, K., Mizutani, N. & Kato, M. (1980) Thermal decomposition of cerussite (PbCO3) in carbon dioxide atmosphere (0-50 atm). Thermochim. Acta 35, 307313.CrossRefGoogle Scholar
Yamaguchi, J., Sawada, Y., Sakurai, O., Uematsu, K., Mizutani, N. & Kato, M. (1980b) Thermal decomposition of hydrocerussite (2PbCO3.Pb(OH)2) in carbon dioxide atmosphere (0-50 atm). Thermochim. Acta 37, 7988.CrossRefGoogle Scholar