Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:06:14.410Z Has data issue: false hasContentIssue false

The Role of Sorptive Layers in the Formation And Change of the Crystal Structure of Montmorillonite

Published online by Cambridge University Press:  09 July 2018

M. V. Eirish
Affiliation:
The Institute of Geology of the Academy of Sciences of the Kazakh SSR, Alma-Ata
L. I. Tret'Yakova
Affiliation:
The Institute of Geology of the Academy of Sciences of the Kazakh SSR, Alma-Ata

Abstract

The influence of sorbed cations and hydration on the a and b dimensions of montmorillonite, has been established by the selected area diffraction technique (S.A.D.) and by X-ray diffraction analysis. Concepts on the bonds and interaction mechanism of aluminosilicate layers with sorbed cations and water molecules (which form hydrate-ionic layers) are discussed. These concepts also indicate the basic stages of the sorption process and the formation of the montmorillonite structure. Assuming that aluminosilicate and hydrate-ionic layers represent a single crystal-chemical structure, the change of configuration of the aluminosilicate layers and dimensions of the montmorillonite lattice are explained.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1970

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belov, N.V. (1961) Kristallokhimiya silikatov s krupnymi kationami, p. 7. Izd. Akad. Nauk SSSR, Moscow.Google Scholar
Berrnal, DZH. (1956) Usp. Khim. 25, 641.Google Scholar
Bradley, W.F., Grim, R.E. & Clark, G.L. (1937) Z. Kristallogr. Miner. 97, 216.Google Scholar
Brindlev, G.W. & Macewan, D.M.C. (1953) Ceramics-A symposium, p. 15. The British Ceramic Society.Google Scholar
Brindley, G.W. & DeKimpe, C. (1961) Am. Miner. 46, 1005.Google Scholar
Cowley, J.M. & Goswami, A. (1961) Acta crystallogr. 14, 1071.CrossRefGoogle Scholar
Eirish, M.V. (1960) Izv. VUZ SSSR, Khimiya i khim. TekhnoL 3, 1023.Google Scholar
Eirish, M.V. (1961) Izv. VUZ SSSR, Khimiya i khim. Tekhnol. 4, 64.Google Scholar
Eirish, M.V. (1963) Avtoref kand. diss., Alma-Ata.Google Scholar
Eirish, M.V. (1964) Kolloid. Zh. 26, 633.Google Scholar
Emish, M.V. (1969) V sb.: Litologicheskie issledovaniya v Kazakhstane, Tr. IGN Akad. Nauk Kazakh. SSR, 27, 159. Izd. “Nauka”, Alma-Ata.Google Scholar
Eirtsh, M.V., Ivanova, A.A., Pshenichnaya, N.F. & Tret'yakova, L.I. V sb. (in press) Gliny, ikhmineralogiya, metody izucheniya i praktichneskoye znacheniye. Google Scholar
Giller, Ya.L. (1966) Tablitsy mezhploskostnykh rasstoyaniy, 2, Izd-vo “Nedra”, Moscow.Google Scholar
Hofmann, M. & Klemen, R. (1950)Z. anorg, allg. Chem. 262, 95.Google Scholar
Greene-Kelly, R. (1953) Clay Miner. Bull. 2, 52.CrossRefGoogle Scholar
Grim, R.E. (1953) Clay Mineralogy McGraw-Hill, New York.Google Scholar
Mering, J. & Brindley, G.W. (1967) Clays Clay Miner. 15, 51.Google Scholar
Mering, J. & Oberlin, A. (1967) Clays Clay Miner. 15, 3.Google Scholar
Nakahira, M. & Sugiura, S. (1960) Nature, 186, 877.Google Scholar
Nomush, K. (1954) Discuss. Faraday Soc. 18, 120.Google Scholar
Radoslovich, E.W. (1962) Am. Miner. 47, 617.Google Scholar
Radoslovich, E.W. (1963) Am. Miner. 48, 368.Google Scholar
Radoslovich, E.W. & Norrish, K. (1962) Am. Miner. 47, 599.Google Scholar
Tarasievich, Yu.I. & Ovcharenko, F.D. (1966) Ukr. khim. zh. 32, 1168.Google Scholar
Umansky, M.M., Heifer, D.M. & Zevly, L.S. (1959) Kristallografiya 4, 372.Google Scholar
Veitch, L.G. & Radoslovich, E.W. (1963) Am. Miner. 48, 62.Google Scholar