Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T06:37:09.309Z Has data issue: false hasContentIssue false

Relationships between Structural Parameters and Chemical Composition of Micas

Published online by Cambridge University Press:  09 July 2018

B. B. Smoliar-Zviagin*
Affiliation:
Geological Institute of the Russian Academy of Sciences, 7 Pyzhevsky per., 109017 Moscow, Russia

Abstract

Regression analysis of high-precision structural and chemical data on trioctahedral and dioctahedral micas yielded interrelationships between unit-cell parameters, chemical composition and structural details. Regression equations relating b and csinβ parameters of micas to composition were used for estimating composition from cell data in order to analyse P-T conditions of rock formation. Algorithms for computing atomic coordinates for 2M1 37' and 1M dioctahedral micas having either centrosymmetric or non-centrosymmetric layers and 1M trioctahedral micas are presented. Deviations of computed atomic coordinates from experimental values are, on average, 0·002 Å for octahedral cations and 0·005-0·010 Å for other atoms. Discrepancies between calculated and experimental individual interatomic distances seldom exceed 0·01 Å. Computed atomic coordinates were used to calculate X-ray diffraction patterns for glauconite and illite. Results indicate a close fit between the calculated and experimental patterns. The local structure around an octahedral cation of interest can be determined.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelo, C.A.J. (1978) Layer deformation and crystal energy of micas and related minerals. I. Structural models for 1M and 2M1 polytypes. Am. Miner. 63, 782792.Google Scholar
Bailey, S.W. (1984) Crystal chemistry of the true micas. Pp. 13-60 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy 13, Mineralogical Society of America, Washington, DC.Google Scholar
Baur, W.H. (1981) Interatomic distance prediction for computer simulation of crystal structures. Pp. 31-52 in: Structure and Bonding in Crystals (M. O’Keeffe & A. Navrotsky, editors). Academic Press, NY.Google Scholar
Bookin, A.S. & Smoliar, B.B. (1985) Simulation of bondlengths in coordination polyhedra of 2:1 layer silicates. Proc. 5th Meet. European Clay Groups, Prague, 51-56.Google Scholar
Bookin, A.S., Drits, V.A., Rozhdestvenskaya, I.V., Semenova, T.F. & Tsipursky, S.I. (1982) Possibilities and limitations in the electrostatic approximation for determination of OH-vector orientations in layer silicates. Miner. Zhurnal 4, 2934.(in Russian).Google Scholar
Brown, I.D. (1987) Recent developments in the bond valence model of inorganic bonding. Phys. Chem. Mineral. 15, 3034.CrossRefGoogle Scholar
Daynyak, L.G., Daynyak, B.A., Bookin, A.S. & Drits, V.A. (1984) Interpretation of Mossbauer spectra of dioctahedral Fe-phyllosilicates. I. Calculation of electric-field gradients and relative intensities of the lines of quadruple splitting. Kristallografia 29, 94100.(in Russian).Google Scholar
Dollase, W.A. (1987) Distribution of interatomic distances in solid solutions of the NaCl type. Z. Krist. 179, 215231.CrossRefGoogle Scholar
Donnay, G., Donnay, J.D.H. & Takeda, H. (1964) Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst. 17, 13741381.CrossRefGoogle Scholar
Drits, V.A. (1971) Regularities in crystal-chemical structure of trioctahedral micas. Pp. 96-110 in: Epigenesis and its Mineral Indicators (A.G. Kossovskaya, editor). “Nauka”, Moscow, 96110.(in Russian).Google Scholar
Drits, V.A. (1975) Structural and crystal-chemical features of layer silicates. Pp. 35-51 in: Crystal Chemistry of Minerals and Geological Problems. Nauka, Moscow (in Russian).Google Scholar
Drits, V.A. & Kossovskaya, A.G. (1991) Clay Minerals: Mica and Chlorite. Nauka, Moscow.Google Scholar
Drits, V.A. & Smoliar-Zviagina, B.B. (1992) Relationships between unit-cell parameters and cation composition of sheet silicates I: White micas. Geologica Carpathica—Clays 1, 3134.Google Scholar
Drits, V.A. & Tchoubar, C. (1990) X-ray Diffraction by Disordered Lamellar Structures. Springer-Verlag, Berlin.Google Scholar
Drits, V.A., Tepikin, V.E. & Alexandrova, V.A. (1971) Construction of structural models for trioctahedral micas and the structure of ferruginous biotite. Pp. 111-120 in: Epigenesis and its Mineral Indicators (A.G. Kossovskaya, editor). Nauka, Moscow (in Russian).Google Scholar
Guggenheim, S. & Bailey, S.W. (1978) Refinement of the margarite structure in the subgroup symmetry: correction, further refinement and components. Am. Miner. 63, 186187.Google Scholar
Guggenheim, S. & Kāto, T. (1984) Kinoshitalite and Mn phlogopites: trial refinements in subgroup symmetry and further refinement in ideal symmetry. Mineral J. (Japan) 12, 15.Google Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357-468 in: Micas (S.W. Bailey, editor). Reviews in Mineralogy 13, Mineralogical Society of America, Washington DC.Google Scholar
Guven, N. (1971) The crystal structures of 2Mt phengite and 2MX muscovite. Z. Krist. 134, 196212.Google Scholar
Joswig, W., Amthauer, G. & Takeuchi, Y. (1986) Neutron diffraction and Mossbauer spectroscopic study of clintonite (xanthophyllite). Am. Miner. 71, 11941197.Google Scholar
Joswig, W., Takeuchi, Y. & Fuess, H. (1983) Neutron-diffraction study on the orientation of hydroxyl groups in margarite. Z. Krist. 165, 295303.Google Scholar
Knurr, R.A. & Bailey, S.W. (1986) Refinement of Mn-substituted muscovite and phlogopite. Clays Clay Miner. 34, 716.Google Scholar
Kroll, H., Maurer, H., Stockelman, D., Beckers, W., Fulst, J., Krūsemann, R., Stutenbaumer, Th. & Zingel, A. (1992) Simulation of crystal structures by a combined distance-least-squares/valence-rule method. Z. Krist. 199, 4966.Google Scholar
Lee, J.H. & Guggenheim, S. (1981) Single crystal X-ray refinement of the pyrophyllite-lTc. Am. Miner. 6, 350367.Google Scholar
Lin, C.-yi & Bailey, S.W. (1984) The crystal structure of paragonite-2Mļ. Am. Miner. 69, 122127.Google Scholar
Meier, W.M. & Villiger, H. (1969) Die Methode der Abstandverfeinerung zur Bestimmung Atomkoordinaten idealisierter Geruststrukturen. Z. Krist. 129, 411-123.Google Scholar
Perdikatsis, B. & Burzlaff, H. (1981) Strukturverfeinerung am Talc. Z. Krist. 156, 177186.Google Scholar
Radoslovich, E.W. (1961) Surface symmetry and cell dimensions of layer lattice silicates. Nature 191, 6768.Google Scholar
Radoslovich, E.W. (1962) The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. Am. Miner. 47, 599616.Google Scholar
Richardson, S.M. & Richardson, J.W., Jr. (1982) Crystal structure of a pink muscovite from Archer's Post, Kenya: implications for reverse pleochroism in dioctahedral micas. Am. Miner. 67, 6975.Google Scholar
Rothbauer, R. (1971) Untersuchung eines 2MrMuskovits mit neutronenstrahlen. N. Jb. Miner. Mh. H4,143-154.Google Scholar
Rule, A. & Bailey, S.W. (1985) Refinement of the crystal structure of phengite-A/ļ. Clays Clay Miner. 33, 403-109.Google Scholar
Sakharov, B.A. (1991) The nature of layer stacking faults in microdivided dioctahedral micaceous minerals. Proc. 7th Meet. European Clay Groups, Dresden 3, 907908.Google Scholar
Sakharov, B.A., Besson, G., Drits, V.A., Kameneva, M.Yu., Salyn, A.L. & Smoliar, B.B. (1990) X-ray study of the nature of stacking faults in the structure of glauconites. Clay Miner. 25, 419435.Google Scholar
Schultz, P.K., Slade, P.G. & Tiekink, P.R.T. (1989) Refinement of a muscovite in Cl symmetry. N. Jb. Miner. Mh. H3, 121129.Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V. & Frank-Kamenetskii, V.A. (1977a) Refinement of the crystal structure of hydroxyl-phlogopite in connection with isomorphism in the phlogopite-tetraferriphlogopite series. Pp. 101— 109 in: Problems of Isomorphism and Genesis of Mineral Indicators and Complexes. The Kalmyk University Press, Elista (in Russian).Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V. & Frank-Kamenetskii, V.A. (1977b) Refinement of the crystal structure of tetraferriphlogopite. Soviet Phys. Crystallogr. 22, 680683.(English translation).Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V., Frank-Kamenetskii, V.A. & Pavlishin, V.I. (1983) Crystal structure of tetraferriphlogopite and tetraferribiotite. Mineral. Zhurnal 5, 4149.(in Russian).Google Scholar
Slonimskaya, M.V., Besson, G., Dainyak, L.G., TchoubarC. & Drits, V.A. (1986) Interpretation of the IR spectra of celadonites and glauconites in the region of the OH-stretching frequencies. Clays Clay Miner. 21, 377388.CrossRefGoogle Scholar
Smoliar, B.B. & Drits, V.A. (1988) Dependence of the unit-cell b parameter in dioctahedral micas on chemical composition. Mineral. Zhurnal 10, 1016.(in Russian).Google Scholar
Smoliar-Zviagina, B.B. (1992) Structure modeling of 2:1 layer silicates. PhD thesis, Inst. Ore Miner., Moscow, Russia.Google Scholar
Toraya, H. (1981) Distortions of octahedra and octahedral sheets in 1M micas and the relation to their stability. Z. Krist. 157, 173190.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1977) Effectivity of the electronometric method of intensity measurement in structural investigations by electron diffraction. Izvestiya Akad. Nauk SSSR, Ser. phys. 41, 22632271.(in Russian).Google Scholar
Tsipursky, S.I. & Drits, V.A. (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites. Clay Miner. 19, 177193.Google Scholar
Tsipursky, S.I. & Drits, V.A. (1986) Refinement of the crystal structure of celadonite. Miner. Zhurnal 8, 3240.(in Russian).Google Scholar
Tsipursky, S.I., Smoliar, B.B., Trubkin, N.V., Sakharov, B.A. & Ivanovskaya, T.A. (1989) Biphase globular 2:1 layer silicates. Collected Abstr. 12th European Crystallographic Meeting, Moscow 2, 168.Google Scholar
Weiss, Z., Rieder, M. & Chmielova, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. Eur. J. Mineralogy 4, 665682.Google Scholar
Weiss, Z., Rieder, M., Chmielova, M. & Krajicek, J. (1985) Geometry of the octahedral coordination in micas: a review of refined structures. Am. Miner. 70, 747757.Google Scholar
Zvyagin, B.B., Rabotnov, V.T., Sidorenko, O.V. & Kotelnikov, D.D. (1985) A unique mica consisting of non- centrosymmetric layers. Izvestiya Akad. Nauk SSSR, Ser. geol. 5, 121-124 (in Russian).Google Scholar
Zvyagin, B.B. (1979) The essence of polytypism and the principles in the consideration of polytype modifications. Pp. 62-83 in: High-Voltage Electron Diffraction in the Study of Layer Minerals (V.A. Drits, editor). Nauka, Moscow (in Russian).Google Scholar