Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T03:04:08.792Z Has data issue: false hasContentIssue false

The use of combined thermal analysis to study crystallization, pore structure, catalytic activity and deactivation of synthetic zeolites

Published online by Cambridge University Press:  09 July 2018

Z. Gabelica
Affiliation:
Facultés Universitaires de Namur, Departement de Chimie, Laboratoire de Catalyse, 61, rue de Bruxelles, B-5000 Namur, Belgium
B. Nagy J.
Affiliation:
Facultés Universitaires de Namur, Departement de Chimie, Laboratoire de Catalyse, 61, rue de Bruxelles, B-5000 Namur, Belgium
E. G. Derouane
Affiliation:
Facultés Universitaires de Namur, Departement de Chimie, Laboratoire de Catalyse, 61, rue de Bruxelles, B-5000 Namur, Belgium
J.-P. Gilson*
Affiliation:
Facultés Universitaires de Namur, Departement de Chimie, Laboratoire de Catalyse, 61, rue de Bruxelles, B-5000 Namur, Belgium
*
*W. R. Grace & Co., Davison Chemical Division, Washington Research Center, 7379 Route 32, Columbia, Maryland 21045, USA.

Abstract

Emphasis is placed on the advantages of combining simultaneous thermal analysis methods (TG-DTA-DTG) with other complementary physico-chemical techniques for investigating synthesis and various properties of zeolites belonging to the pentasil family. TG and DTA give quantitative information on the dehydration and decomposition of organic guest molecules that interact with intermediate phases obtained during hydrothermal transformation of amorphous aluminosilicate gels into crystalline zeolites. In particular, weight losses (TG) and heat effects (DTA) due to the oxidative decomposition of tetrapropylammonium ions occluded in an intermediate phase have been related to the amount of zeolite ZSM-5 present. As a result, very small particles of this zeolite, amorphous to X-rays, could be detected in the early stages of the crystallization process. Isothermal sorption of small hydrocarbon molecules (n-hexane, 3-methyl-pentane) is used to probe the intracrystalline pore volume of zeolite ZSM-5. The total hydrocarbon uptake (TG) and the shape of the corresponding DTA peak are sensitive to steric modifications of the ZSM-5 channel system by various chemicals, while the sorption rates are better correlated to the extent of zeolite surface poisoning by boron or carbon. TG-DTA data provide an easy means of describing the filling and packing of n-hexane in ZSM-5 pore structure. Various steps characterizing isothermal competitive sorptions (nitrogen, ethylene, water) or catalytic conversions at high temperature (ethylene, methanol) over H-ZSM-5 are described. Finally, the progressive formation (removal) of carbonaceous residues resulting from these transformations are related to the actual rate of de-activation (re-activation) of a zeolitic material. In this respect, three different synthetic zeolites, namely mordenite, offretite and H-ZSM-5, which differ by their shape-selective properties and structure of their channel network, are investigated by TG.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiello, R. & Barrer, R.M. (1970) Hydrothermal chemistry of silicates. XIV Zeolite crystallization in presence of mixed bases. J. Chem. Soc. (A) 1970, 14701475.Google Scholar
Anderson, J.R., Foger, K., Mole, T., Rajadhvaksha, R.A. & Sanders, J.V., (1979) Reactions on ZSM-5 type zeolite catalysts. J. Catal. 58, 114130.Google Scholar
Argauer, R.J. & Landolt, G.R. (1972) Crystalline ZSM-5 and method of preparing the same. U.S. Patent 3,702,886.Google Scholar
Babu, G.P., Kulkarni, S.B. & Ratnasamy, P. (1983) Selectivity enhancement in xylene isomerization over NiHZSM-5. J. Catal. 79, 215217.CrossRefGoogle Scholar
Barrer, R.M. (1981) Zeolites and their synthesis. Zeolites 1, 130140.Google Scholar
Barrer, R.M. (1982) Hydrothermal Chemistry of Zeolites. Academic Press, London.Google Scholar
Barrer, R.M. & Denny, P.J. (1961) Hydrothermal chemistry of the silicates, Part IX, Nitrogeneous aluminosilicates. J. Chem. Soc., 971982.Google Scholar
Bibby, D.M., Milestone, N.B. & Aldridge, L.P. (1979) Silicalite-2, a silica analogue of the aluminosilicate zeolite ZSM-11. Nature 280, 664665.Google Scholar
Bibby, D.M., Milestone, N.B. & Aldridge, L.P. (1980) NH4-tetraalkylammonium systems in the synthesis of zeolites. Nature 285, 3031.CrossRefGoogle Scholar
Bibby, D.M. & Parker, L.M. (1983) ZSM-39: its preparation and some properties. Zeolites 3, 1112.CrossRefGoogle Scholar
B. Nagy, J., Gabelica, Z., Debras, G., Bodart, P., Derouane, E.G. & Jacobs, P.A. (1983a) High resolution magic-angle-spinning solid-state 29Si-NMR characterization of the structure and aluminium orderings of zeolites. J. Mol. Catal. 20, 327336.CrossRefGoogle Scholar
B. Nagy, J., Gabelica, Z. & Derouane, E.G. (1983b) Position and configuration of the guest organic molecules within the framework of the ZSM-5 and ZSM-11 zeolites. Zeolites 3, 4349.Google Scholar
B. Nagy, J., Gabelica, Z., Derouane, E.G. & Jacobs, P.A. (1982) Magic-angle-spinning 29Si-NMR study of the structure of ZSM-5 and ZSM-11 zeolites. Chem. Letters, 20032006.CrossRefGoogle Scholar
Bolis, V., Vedrine, J.C., van den Berg, J.P., Wolthuizen, J.P. & Derouane, E.G. (1980) Adsorption and activation of ethylene by zeolite H-ZSM-5. J. Chem. Soc. Faraday Trans. 1 76, 16061616.Google Scholar
Breck, D.W. (1974) Zeolite Molecular Sieves, Structure, Chemistry and Use, pp. 441460, Wiley, New York.Google Scholar
Butter, S.A. (1973) Selective production of para-xylene. U.S. Patent 4,007,231.Google Scholar
Butter, S.A. & , K.W. (1976) Methylation of toluene. U.S. Patent 3,965,208.Google Scholar
Casci, J.L., Whittam, T. & Lowe, B.M. (1983) The synthesis and characterization of zeolite EU-1. Proc. Sixth Int. Zeolite. Conf., Reno (Bisio, A. & Olson, D.H., editors). Butterworths, London (in press).Google Scholar
Chandawar, K.H., Kulkarni, S.B. & Ratnasamy, P. (1982) Alkylation of benzene with ethanol over ZSM-5 zeolites. Appl. Catal. 4, 287295.CrossRefGoogle Scholar
Chang, C.D. & Lang, W.H. (1975) Conversion of alcohols and ethers to hydrocarbons. U.S. Patent 3,899,544.Google Scholar
Casci, J.L., Whittam, T. & Lowe, B.M. (1983) The systhesis and characterization of zeolite EU-1. Proc. Sixth Int. Zeolite. Conf. Reno (Bisio, A. & Olson, D.H., editors). Butterworths, London (in press).Google Scholar
Chandawar, K.H., Lulkarni, S.B. & Ratmasmy, P. (1982) Alkylation of benzene with ethanol over ZSM-5 zeolites. Appl. Catal. 4, 287295.Google Scholar
Chang, C.D. & Lang, W.H. (1975) Conversion of alcohols and ethers to hydrocarbons. U.S.Patent 3,899,544.Google Scholar
Chang, C.D. & Silvestri, A.J. (1977) The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. J. Catal. 47, 249259.CrossRefGoogle Scholar
Chao, K.J. (1979) Crystallization of zeolites from the nitrogeneous aluminosilicate. Proc. Nat. Science Council, Taiwan 3, 233236.Google Scholar
Chao, K.I., Tasi, T.C, Chen, M.S. & Wang, I. (1981) Kinetic studies on the formation of zeolite ZSM-5. J. Chem. Soc. Faraday Trans. 1 77, 547555.Google Scholar
Chen, N.Y. & Garwood, W.E. (1978) Some catalytic properties of ZSM-5, a new shape selective zeolite. J. Catal. 52, 453458.CrossRefGoogle Scholar
Chen, N.Y., Kaeding, W.W. & Dwyer, F.G. (1979) Para directed aromatic reaction over shape selective molecular sieve zeolite catalysts. J. Am. Chem. Soc. 101, 67836784.CrossRefGoogle Scholar
Chu, C.C. (1983) Zeolite catalysts modified with group IA metals. U.S. Patent 4, 391, 739 (and references of the same author cited therein).Google Scholar
Colella, C., Aiello, R. & Nastro, A. (1982) Zeolite synthesis in systems containing organic cations. I. The system lithium-tetramethylammonium. Ann. Chim. (Rome) 72, 407414.Google Scholar
Coudurier, G., Naccache, C. & Vedrine, J.C. (1982) Uses of I.R. spectroscopy in identifying ZSM zeolite structure.J. Chem. Soc. Chem. Commun., 14131415.Google Scholar
Debras, G., Derouane, E.G., Gilson, J.P., Gabelica, Z. & Demortier, G. (1983) Prompt nuclear and atomic reactions for elemental analysis of zeolites I. A discussion of the experimental methods. Zeolites 3, 3742.CrossRefGoogle Scholar
Dejaifve, P., Auroux, A., Gravelle, P.C., Vedrine, J.C., Gabelica, Z. & Derouane, E.G. (1981) Methanol conversion on acidic ZSM-5, offretite and mordenite zeolites: a comparative study of the formation and stability of coke deposits. J. Catal. 70, 123136.Google Scholar
Dejaifve, P., Vedrine, J.C., Bolis, V. & Derouane, E.G. (1980) Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. J. Catal. 63, 331345.Google Scholar
Derouane, E.G. (1980) New aspects of molecular shape-selectivity: catalysis by zeolite ZSM-5. Pp. 518 in: Catalysis by Zeolites (Imelik, B. et al., editors). Elsevier, Amsterdam.Google Scholar
Derouane, E.G. (1982) Diffusion and shape-selective catalysis in Zeolites. Pp. 101146 in: Intercalation Chemistry (Whittingham, M. S. & Jacobson, A. J., editors). Academic Press, New York.Google Scholar
Derouane, E.G. (1983a) Conversion of methanol to gasoline over zeolite catalysts. I. Reaction mechanisms. Pp. 515528 in Zeolites: Science and Technology (Ribeiro, F. R. et al., editors). Martinus Nijhoff, Den Haag (in press).Google Scholar
Derouane, E.G. (1983b) Molecular shape selective catalysis by zeolites. Pp. 347371 in Zeolites: Science and Technology (Ribeiro, F. R. et al., editors). Martinus Nijhoff, Den Haag (in press).Google Scholar
Derouane, E.G., Detremmerie, S., Gabelica, Z. & Blom, N. (1981b) Synthesis and characterization of ZSM-5 type zeolites. I. Physico-chemical properties of precursor and intermediates. Appl. Catal. 1, 201224.Google Scholar
Derouane, E.G., B. Nagy, J., Gilson, J.P. & Gabelica, Z. (1980) Adsorption and conversion of ethylene on H-ZSM-5 zeolite studied by 13C NMR and thermogravimetry. Stud. Surf. Sci. Catal. 7, 14121413.Google Scholar
Derouane, E.G. & B. Nagy, J. (1983) Applications of high resolution 13C-NMR to reactions on zeolites and oxides. In: Catalytic Materials: relationship between Structure and Reactivity. ACS Symposium Series, American Chemical Society, Washington D.C. (in press).Google Scholar
Derouane, E.G., Dejaifve, P., Gabelica, Z. & Vedrine, J. (1981a) Molecular shape selectivity of ZSM-5, modified ZSM-5 and ZSM-11 type zeolites. Faraday Disc. Chem. Soc. 72, 331344.Google Scholar
Derouane, E.G. & Gabelica, Z. (1980) A novel effect of shape selectivity: molecular traffic control in zeolite ZSM-5. J. Catal. 65, 486489.CrossRefGoogle Scholar
Derouane, E.G., Gabelica, Z. & Jacobs, P.J. (1981C) Reply to comments on molecular traffic control in zeolite ZSM-5. J. Catal. 70, 238239.Google Scholar
Derouane, E.G., Gilson, J.P. & B. Nagy, J. (1981d) Adsorption and conversion of ethylene on H-ZSM-5 zeolite studied by 13C NMR spectroscopy. J. Molec. Catal. 10, 331340.Google Scholar
Derouane, E.G., Gilson, J.P. & B. Nagy, J. (1982) In situ characterization of carbonaceous residues from zeolite-catalysed reactions using high resolution solid state 13C-NMR spectroscopy. Zeolites 2, 4246.Google Scholar
Dessau, R.M. (1980) Selective sorption properties of zeolites. Pp. 125135 in: Adsorption and Ion Exchange with Synthetic Zeolites (Flank, W. H., editor). ACS Symposium series 135, Americal Chemical Society, Washington D.C. Google Scholar
Dessau, R.M. & Lapierre, R.B. (1982) On the mechanism of methanol conversion to hydrocarbons over H-ZSM-5.J. Catal. 78, 136141.Google Scholar
Doelle, H.J., Heering, J., Riekert, L. & Marosi, L. (1981) Sorption and catalytic reaction in pentasil zeolites. Influence of preparation and crystal size on equilibria and kinetics. J. Catal. 71, 2740.Google Scholar
Espinoza, R.L., Stander, C.M. & Mandersloot, W.G.B. (1983) Catalytic conversion of methanol to hydrocarbons over amorphous or zeolitic silica-alumina. Appl. Catal. 6, 1126.Google Scholar
Flanigen, E.M. (1980) Molecular sieve zeolite technology—-the first twenty-five years. Pure Appl. Chem. 52, 21912211.Google Scholar
Gabelica, Z. (1983) Conversion of methanol over zeolite catalysts. II. Industrial processes. Pp. 529544 in: Zeolites: Science and Technology (Ribeiro, F. R. et al., editors). Martinus Nijhoff, Den Haag (in press).Google Scholar
Gabelica, Z., B. Nagy, J., Bodart, P., Debras, G., Derouane, E.G. & Jacobs, P.A. (1983a) Structural characterization of zeolites by high resolution magic-angle-spinning solid state 29Si-NMR spectroscopy. Pp. 193210 in: Zeolites: Science and Technology (Ribeiro, F. R. et al., editors). Martinus Nijhoff, Den Haag (in press).Google Scholar
Gabelica, Z., B. Nagy, J. & Debras, G. (1983b) Characterization of X-ray amorphous ZSM-5 zeolites by high resolution solid state 13C NMR spectroscopy. J. Catal. 84, 256260.CrossRefGoogle Scholar
Gabelica, Z., B. Nagy, J. & Debras, G. (1983C) Characterization of X-ray amorphous ZSM-5 zeolites by thermal analysis and high-resolution solid-state multinuclear NMR spectroscopy. Acta Chim. Aead. Sci. Hung. (in press).Google Scholar
Gabelica, Z., B. Nagy, J., Debras, G. & Derouane, E.G. (1983d) On the use of multinuclear high resolution solid state NMR spectroscopy to characterize intermediate phases formed during ZSM-5 zeolite synthesis. Proc. Sixth Int. Zeolite Conf., Reno (Bisio, A. & Olson, D. H., editors). Butterworths, London (in press).Google Scholar
Gabelica, Z., Blom, N. & Derouane, E.G. (1983e) Synthesis and characterization of ZSM-5 type zeolites. III. A critical evaluation of the role of alkali and ammonium ions. Appl. Catal. 5, 227248; 7, 383–384.Google Scholar
Gabelica, A., Derouane, E.G. & Blom, N. (1983f) Synthesis and characterization of pentasil type zeolites. II. Structure-directing effect of the organic base or cation. Appl. Catal. 5, 109—117.Google Scholar
Gabelica, Z., Derouane, E.G. & Blom, N. (1983g) Factors affecting synthesis of pentasil zeolites. Pp. 219 259 in: Catalytic Materials: Relationship Between Structure and Reactivity. ACS Symposium Series 248, American Chemical Society, Washington D.C. (in press).Google Scholar
Gabelica, Z., Gilson, J.P., Debras, G. & Derouane, E.G. (1982) A TG-DTA study of the adsorption of small hydrocarbon molecules by various modified ZSM-5 zeolites. Pp. 12031208 in : Proc. 7th Int. Conf. Thermal Analysis (Miller, B., editor). Wiley and Heyden, New York.Google Scholar
Gabelica, Z., Gilson, J.P. & Derouane, E.G. (1981) TG-DTA study of n-hexane adsorption by various modified ZSM-5 type zeolites. Pp. 434438 in: Proc. 2nd Eur. Symp. Thermal. Analysis (D. Dollmore, , editor). Heyden, London.Google Scholar
Gilson, J.P. (1982) La zéolithe ZSM-5: caractérisations physicochimiques et réactivitié des molécules simples, PhD thesis, Univ. Namur, Belgium.Google Scholar
Gilson, J.P., B. Nagy, J., Gabeeica, Z. & Derouane, E.G. (1983) 13-NMR and TG-DTA investigations of the conversion of methanol on H-ZSM-5 in the presence of ethylene (in preparation).Google Scholar
Gilson, J.P., Gabelica, Z, B. Nagy, J. & Derouane, E.G. (1980) TG-DTA and 13C-NMR investigation of the role of C2H4 in the conversion of CH3OH into hydrocarbons on the H-ZSM-5 zeolite. Pp. 189192 in: Fifth Int. Conf. Zeolites, Recent Progress Reports and Discussions (Sersale, R. et al., editors). Giannini, Naples.Google Scholar
Guisnet, M., Cormerais, F.X., Yi-Shen, C., Perot, G. & Freund, E. (1983a) Effect of sodium content on the activity of ZSM-5 zeolite. Zeolites 4, 108109.CrossRefGoogle Scholar
Guisnet, M., Giannetto, G., Hilaireau, P. & Perot, G. (1983b) Effect of platinum on the constraint index of ZSM-5 zeolite. J. Chem. Soc. Chem. Commun. 14111412.Google Scholar
Haynes, H.W. (1978) Chemical, physical and catalytic properties of large pore acidic zeolites. Catal. Rev.-Sci. Eng. 17, 283336.Google Scholar
Howden, M.G. (1982a) The role of tetrapropylammonium template in the synthesis of ZSM-5. CSIR Report CENG 413. Pretoria, South Africa.Google Scholar
Howden, M.G. (1982b) Preparation and evaluation of an amorphous silica-alumina catalyst synthesized in the presence of tetrapropylammonium hydroxide. CSIR Report CENG 441. Pretoria, South Africa.Google Scholar
Inui, T., Matsuda, H. & Takegami, Y. (1983) Relation between acidic properties and catalytic performance for gasoline synthesis from methanol over ZSM-5 class zeolite. Proc. Sixth Int. Zeolite Conf., Reno (Bisio, A. & Olson, D. H., editors). Butterworths, London (in press).Google Scholar
Jacobs, P.A., Beyer, H.K. & Valyon, J. (1981a) Properties of the end members in the pentasil family of zeolites: characterization as adsorbants. Zeolites 1, 161167.CrossRefGoogle Scholar
Jacobs, P.A., Derouane, E.G. & Weitkamp, J. (1981b) Evidence of X-ray-amorphous zeolites. J. Chem. Soe. Chem. Commun., 591593.Google Scholar
Jacobs, P.A., Martens, J., Weitkamp, J. & Beyer, H.K. (1981c) Shape-selectivity changes in high-silica zeolites. Faraday Disc. Chem. Soc. 72, 353369.Google Scholar
Jacobs, P.A., Tielen, M., B. Nagy, J., Debras, G., Derouane, E.G. & Gabelica, Z. (1983) Study of the dealumination and realumination of ZSM-5 type zeolites by 29Si- and 27Al-high resolution magic angle spinning NMR spectroscopy. Proc. Sixth Int. Zeolite Conf., Reno (Bisio, A. & Olson, D. H., editors). Butterworths, London (in press).Google Scholar
Kaeding, W.W. (1977) Selective production of para-xylene. U.S. Patent 4,029,716.Google Scholar
Kaeding, W.W. (1978) Selective production of para-xylene. U.S. Patent 4,078,009.Google Scholar
Kaeding, W.W. & Butter, S.A. (1980) Production of chemicals from methanol. I. Low molecular weight olefins.J. Catal. 61, 155164.Google Scholar
Kaeding, W.W., Chu, C., Young, L.B. & Butter, S.A. (1981a) Shape-selective reaction with zeolite catalysts. I1. Selective disproportionation of toluene to produce benzene and p-xylene. J. Catal. 69, 392398.Google Scholar
Kaeding, W.W., Chu, C., Young, L.B. & Butter, S.A. (1981b) Selective methylation of toluene to produce para-xylene. J. Appl. Polym. Sci. 36, 209215.Google Scholar
Kaeding, W.W. & Young, L.B. (1977) Selective production of para-xylene. U.S. Patent 4,034,053.Google Scholar
Kaeding, W.W. & Young, L.B. (1978) Selective ethylation of mono alkyl benzenes. U.S. Patent 4,086,287.Google Scholar
Lechert, H. (1983) The physical characterization of zeolites. Pp. 151192 in: Zeolites: Science and Technology (Ribeiro, F. R. et al., editors). Martinus Nijhoff, Den Haag (in press).Google Scholar
Lohse, U. & Fahlke, B. (1983) Zur Absorption von Kohlenwasserstoffen an Silicalit und ZSM-5. Chem. Techn. 35, 350353.Google Scholar
Lok, B.M., Cannan, T.R. & Messina, C.A. (1983) The role of organic molecules in molecular sieve synthesis. Zeolites 3, 282291.Google Scholar
Mackenzie, R.C. (1970) Simple phyllosilicates based on gibbsite and brucite-like sheets. Pp. 498537 in: Differential Thermal Analysis 1 (Mackenzie, R. C., editor). Academic Press, London.Google Scholar
Mackenzie, R.C. & Caillere, S. (1979) Thermal Analysis: DTA, TG, DTG. Pp. 243284 in: Data Handbook for Clay Minerals and other Non-Metallic Minerals (Van Olphen, H. & Fripiat, J. J., editors). Pergamon Press, Oxford.Google Scholar
Manton, M.R.S. & Davidtz, J.C. (1979) Controlled pore sizes and active site spacings determining selectivity in amorphous silica-alumina catalysts. J. Catal. 60, 156166.Google Scholar
McAdie, H.G. (1970) Inclusion compounds. Pp. 449452 in: Differential Thermal Analysis 1 (Mackenzie, R. C., editor). Academic Press, London.Google Scholar
McDaniel, C.V. & Maher, P.K. (1976) Zeolite stability and ultrastable zeolites. Pp. 285331 in: Zeolite Chemistry and Catalysis (Rabo, J. A., editor). ACS Monograph 171, American Chemical Society, Washington, D.C.Google Scholar
McIntosh, R.J. & Seddon, D. (1983) The properties of magnesium and zinc oxide treated ZSM-5 catalysts for conversion of methanol into olefin-rich products. Appl. Catal. 6, 307314.CrossRefGoogle Scholar
Milton, R.M. (1959) Molecular sieves adsorbants.U.S. Patent 2, 882,243.Google Scholar
Mole, T. (1983) Conversion of methanol to ethylene over ZSM-5 zeolite. J. Catal. (in press).Google Scholar
Nastro, A., Aiello, R. & Colella, C. (1983) Zeolite synthesis is systems containing organic cations. II. ZSM-5 crystallization from Na, K-NH4-TPA systems. Ann. Chim. Rome (in press).Google Scholar
Nayak, V.S. & Choudhary, V.B. (1982) Isomerization of xylene on H-ZSM-5. Part I. Influence on catalytic activity and selectivity of Si/Al ratio, degree of cation exchange, deammoniation conditions and poisoning of stronger acid sites. Appl. Catal. 4, 333352.Google Scholar
Novakova, J., Kubelkova, L., Dolessek, Z. & Jiru, P. (1979) Different activity of H-ZSM-5 and HNaY zeolites in the interaction with ethylene: effect of water vapour. Collect. Czech. Chem. Commun. 44, 33413345.Google Scholar
Occelli, M. L., Innes, R.A., Apple, T.M. & Gerstein, B.C. (1983) Surface properties of offretite and ZSM-34 zeolites. In: Proc. Sixth Int. Zeolite Conf., Reno (Bisio, A. & Olson, D. H., editors). Butterworths, London (in press).Google Scholar
Occelli, M.L. & Perrotta, A. J. (1983) Synthesis and characterization of a new zeolite of the offretite type. Pp. 2239 in: Intrazeolite Chemistry (Stucky, G. D. & Dwyer, F. G., editors). ACS Symposium Series 218, American Chemical Society, Washington D.C. Google Scholar
Olson, D.H., Haag, W.O. & Lago, R.M. (1980) Chemical and physical properties of the ZSM-5 substitutional series. J. Catal. 61, 390396.Google Scholar
Olson, D.H., Kokotailo, G.T., Lawton, S.L. & Meier, W.M. (1981) Crystal structure and structure-related properties of ZSM-5. J. Phys. Chem. 85, 22382243.Google Scholar
Ono, Y. & Mori, T. (1981) Mechanism of methanol conversion into hydrocarbons over ZSM-5 zeolite. J. Chem. Soc. Faraday Trans. 1 77, 22092221.Google Scholar
Parker, L.M., Bibby, D.M. & Patterson, J.E. (1984) Thermal decomposition of ZSM-5 and silicalite precursors. Zeolites 4, 168174.Google Scholar
Penchev, V., Minchev, C., Kanazirev, V., Pencheva, O., Borisova, N., Kosova, L., Lechert, H. & Kacirek, H. (1983) Thermochemical and acidic properties of the zeolites offretite, omega and ZSM-5. Zeolites 2, 249254.Google Scholar
Post, J.G. & van Hooff, J.H.C. (1984) Acidity and activity of H-ZSM-5 measured with NH3-TPD and n-hexane cracking. Zeolites 4, 1521.Google Scholar
Qingxia, W., Guangyu, C., Zhiyuan, Z. & Gupquan, C. (1982) Study on ZSM-5 zeolite catalysts of non-organic amine cation type. Cuihua Xuebao 3, 284289.Google Scholar
Rabo, J.A., Bezman, R.D. & Poutsma, M.L. (1978) Zeolites in industrial catalysts. Acta Phys. Chem. 24, 4052.Google Scholar
Rhee, K., Rao, V.U.S., Stencel, J.M., Melson, G.A. & Crawford, J.E. (1983) Supported transition metal compounds. Infrared studies of the acidity of Co/ZSM-5 and Fe/ZSM-5 catalysts. Zeolites 3, 337343 (and references 5, 6 and 7 cited therein).Google Scholar
Rommanikov, V.N., Mastikhin, V.M., Hocevar, S. & Drzaj, B. (1983) Laws observed in the synthesis of zeolites having the structure of ZSM-5 and varying chemical composition. Zeolites 3, 311—320.Google Scholar
Shin-Chiun, C. (1983) Zeolite catalysts modified with group I.A. metals. U.S. Patent 4,391,739.Google Scholar
Shylyapkina, E.N. (1978) Quantitative thermogravimetry on multicomponent zeolite-bearing rocks. J. Thermal. Anal. 13, 553561.Google Scholar
Sidamonidze, Sh.I., Tsitsishvili, G.V. & Gvilava, M.N. (1983) IR-spectroscopic study of decomposition of tetrarnethylammonium cations in the structure of zeolites of the ultrasil type with different silica/alumina ratios. Izv. Akad. Nauk Gruz. SSR. Ser. Khim. 9, 2932.[Chem. Abstr. (1983) 99,81567j].Google Scholar
Skeels, G.W. & Flank, W.H. (1983) Acidity in zeolite ZSM-5. Pp. 369382 in: Intrazeolite Chemistry (Stucky, G. D. & Dwyer, F. G., editors). ACS Symposium Series 218, American Chemical Society, Washington D.C. Google Scholar
Smykatz-Kloss, W. (1974) Differential Thermal Analysis, Application and Results in Mineralogy, pp. 8190. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Stach, H., Throl, U., Vetter, R. & Loka, K. (1982) Influence of module and pore diameter on the adsorption of ethene in molecular sieves with and without cations. Pp. 4655 in: Workshop on Adsorption of Hydrocarbons in Mieroporous Absorbents II (Sauer, J., editor), Academy of Sciences of the GDR, Berlin, GDR.Google Scholar
Stencel, J.M., Diehl, J.R., Douglas, L.J., Spitler, C.A., Crawford, J.E. & Melson, G.A. (1982) Fe3(CO)12 impregnation ZSM-5: characterization and liquefaction activity. Colloids and Surfaces 4, 331342.Google Scholar
Surin, S.A., Alekseeva, T.V., Kefedov, B.K., Kaliko, M.A. & Zeretskaya, T.G. (1982) Thermogravimetric study of high-silica zeolites containing tetrabutylammonium cations. Kinet. Catal. 23, 420423.Google Scholar
Thamm, H. & Regent, N.I. (1982) Kalorimetrisch bestimmte Adsorptionswärmen des Benzens und n-Hexane an den Molekularsieben NaY und Silicalit. Z. Chem. 22, 232233.Google Scholar
Thamm, H., Stach, H. & Fiebig, W. (1983) Calorimetric study of the adsorption of n-butane and but-l-ene on a highly dealuminated Y-type zeolite and on silicalite. Zeolites 3, 9597.Google Scholar
Todor, D.N. (1976) Thermal Analysis of Minerals, pp. 208243. Abacus Press, Tunbridge Wells, Kent, UK.Google Scholar
Topsøe, N.Y., Pedersen, K. & Derouane, E.G. (1981) Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites. J. Catal. 70, 4152.Google Scholar
Valyon, J., Mihalyfi, J., Beyer, H.K. & Jacobs, P.A. (1979) Adsorption properties of ZSM-5 zeolite and its aluminium-free analogue. Pp. 134148 in: Proc. Workshop on Adsorption I, Berlin.Google Scholar
Van Den Berg, J.P., Wolthuizen, J.P., Clague, A.D.M., Hays, G.R., Huis, R. & Van Hooff, J.H.C. (1983a) Low temperature oligomerization of small olefins on zeolite H-ZSM5. An investigation with high resolution solid-state 13C-NMR.J. Catal. 80, 130138.Google Scholar
Van Den Berg, J.P., Wolthuizen, J.P. & Van Hooff, J.H.C. (1983b) Reaction of small olefins on zeolite H-ZSM-5. A thermogravimetric study at low and intermediate temperatures. J. Catal. 80, 139144.Google Scholar
Vedrine, J.C., Auroux, A., Dejaifve, P., Ducarme, V., Hoser, H. & Zhou, S. (1982) Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite.J. Catal. 73, 147160.Google Scholar
Von Ballmoos, R. (1981) The 18O-exchange method in zeolite chemistry synthesis, characterization and dealumination of high silica zeolites. Diss. ETH No. 6765, Verlag, Sauerläinder, Aarau, CH.Google Scholar
Whyte, T.E. & Dalla, Betta R.A. (1982) Zeolite advances in the chemical and fuel industries: a technical perspective. Catal. Rev.-Sci. Eng. 24, 567598.Google Scholar
Wolthuizen, J.P., Van Den Berg, J.P. & Van Hooff, J.H.C. (1980) Low temperature reactions of olefins on partially hydrated zeolite H-ZSM-5. Pp. 8592 in: Catalysis by Zeolites (Imelik, B. et al., editors). Elsevier, Amsterdam.Google Scholar
Wu, E.L., Kühl, G.H., Whyte, T.E. & Venuto, P.B. (1971) Thermal decomposition patterns in methyl-ammonium cation-exchanged Y-type faujasites. Pp. 490501 in: Molecular Sieve Zeolites I (Gould, R. F., editor). Adv. Chem. Soc. Ser. 101, American Chemical Society, Washington D.C. Google Scholar
Wu, P., Debebe, A. & Ma, Y.H. (1983) Adsorption and diffusion of C6 and C8 hydrocarbons in silicalite. Zeolites 3, 118122.Google Scholar
Wu, P. & Ma, Y.H. (1983) The effect of cation on adsorption and diffusion in ZSM-5. Proc. Sixth Int. Zeolite Conf.,Reno (Bisio, A. & Olson, D. H., editors). Butterworths, London (in press).Google Scholar
Yoo, J.S., Ahn, B.J. & Chon, H. (1983) Selective disproportionation of toluene over various cation-exchanged ZSM-5 catalysts. Tachan Hwahakhoe Chi 27, 127132.Google Scholar
Young, L.B., Butter, S.A. & Kaeding, W.W. (1982) Shape selective reactions with zeolite catalysts, part Ill. J. Catal. 76, 418432.Google Scholar
Yun, H. S. & Ruren, X. (1982) A study of the synthesis of zeolite ZSM-5 in the system of NH4 +-TPA+-SiO2-Al2O3-H2O. Chem. J. Chinese Univ., 430432.Google Scholar