Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T03:03:04.311Z Has data issue: false hasContentIssue false

Copper supported on acid-activated vermiculite as an efficient and recyclable catalyst for the Biginelli reaction: a green approach

Published online by Cambridge University Press:  02 December 2020

C.E. Torres-Méndez*
Affiliation:
Escuela de Química, Universidad de San Carlos de Guatemala, 11 Av. Ciudad de Guatemala01012, Guatemala
B. López-Mayorga
Affiliation:
Escuela de Química, Universidad de San Carlos de Guatemala, 11 Av. Ciudad de Guatemala01012, Guatemala
*

Abstract

The synthesis of copper citrate complex supported on acid-activated vermiculite was investigated with a view to preparing an efficient, mild, robust and recyclable catalyst for the Biginelli reaction. The new catalyst was characterized by X-ray fluorescence (XRF), infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS). Copper citrate supported over activated vermiculite (AAVrm-Cu2) showed good catalytic activity in the synthesis of 3,4-dihydropyrimidinones. The catalyst can be separated easily from the reaction mixture by filtration and retains its catalytic activity for up to five cycles of reaction with no apparent decrease in yield.

Type
Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: M. Pospíšil

References

Adibi, H., Samimi, H.A. & Beygzadeh, M. (2007) Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catalysis Communications, 8 , 21192124.CrossRefGoogle Scholar
Alvim, H.G.O., Lima, T.B., de Oliveira, A.L., de Oliveira, H.C.B., Silva, F.M., Gozzo, F.C., Souza, R.Y., da Silva, W.A. & Neto, B.A.D. (2014) Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for? The Journal of Organic Chemistry, 79, 33833397.CrossRefGoogle Scholar
Bahekar, S.S., Kotharkar, S.A. & Shinde, D.B. (2004) One-pot construction of dihydropyrimidinones in ionic liquids. Mendeleev Communications, 14(5), 210212.CrossRefGoogle Scholar
Baig, R.B.N. & Varma, R.S. (2013) Copper on chitosan: a recyclable heterogeneous catalyst for azide–alkyne cycloaddition reactions in water. Green Chemistry, 15(7), 18391843.CrossRefGoogle Scholar
Bhuyan, D., Saikia, M. & Saikia, L. (2018) ZnO nanoparticles embedded in SBA-15 as an efficient heterogeneous catalyst for the synthesis of dihydropyrimidinones via Biginelli condensation reaction. Microporous and Mesoporous Materials, 256, 3948.CrossRefGoogle Scholar
Campos, A., Moreno, S. & Molina, R. (2009) Characterization of vermiculite by XRD and spectroscopic techniques. Earth Sciences Research Journal, 13(2), 108118.Google Scholar
Chen, Q., Wu, P., Dang, Z., Zhu, N., Li, P., Wu, J. & Wang, X. (2010) Iron pillared vermiculite as a heterogeneous photo-Fenton catalyst for photocatalytic degradation of azo dye reactive brilliant orange X-GN. Separation and Purification Technology, 71(3), 315323.CrossRefGoogle Scholar
Chmielarz, L., Kowalczyk, A., Michalik, M., Dudek, B., Piwowarska, Z. & Matusiewicz, A. (2010) Acid-activated vermiculites and phlogophites as catalysts for the DeNOx process. Applied Clay Science, 49(3), 156162.CrossRefGoogle Scholar
Chmielarz, L., Wojciechowska, M., Rutkowska, M., Adamski, A., Węgrzyn, A., Kowalczyk, A., Dudek, B., Boron, P., Michalik, M. & Matusiewicz, A. (2012) Acid-activated vermiculites as catalysts of the DeNOx process. Catalysis today, 191(1), 2531.CrossRefGoogle Scholar
Chopda, L.V., & Dave, P.N. (2020) Recent Advances in Homogeneous and Heterogeneous Catalyst in Biginelli Reaction from 2015-19: A Concise Review. ChemistrySelect, 5(19), 55525572.CrossRefGoogle Scholar
Córdova, M.O., Ramírez, C.I., Bejarano, B.V., Razo, G.A., Flores, F.J., Tellez, V.C. & Ruvalcaba, R.M. (2011) Comparative study using different infrared zones of the solventless activation of organic reactions. International Journal of Molecular Sciences, 12(12), 85758580.CrossRefGoogle ScholarPubMed
Crowson, P. (1996) Vermiculite. Pp. 428434 in: Minerals handbook 1996–97 (Crowson, P., editor) Palgrave Macmillan, London.CrossRefGoogle Scholar
da Silva, M.V. & da Silva, L.R.D. (2017) Thermokinetic investigation of acid sites of the vermiculite doped lanthanum. Materials Letters, 186, 3033.CrossRefGoogle Scholar
Damkaci, F. & Szymaniak, A. (2014) Multicomponent heterocyclic chemistry for undergraduate organic laboratory: biginelli reaction with multiple unknowns. Journal of Chemical Education, 91(6), 943945.CrossRefGoogle Scholar
de Fátima, A., Braga, T.C., Neto, L.D.S., Terra, B.S., Oliveira, B.G., da Silva, D.L. & Modolo, L.V. (2015) A mini-review on Biginelli adducts with notable pharmacological properties. Journal of Advanced Research, 6(3), 363373.CrossRefGoogle ScholarPubMed
Desai, B., Dallinger, D. & Kappe, C.O. (2006) Microwave-assisted solution phase synthesis of dihydropyrimidine C5 amides and esters. Tetrahedron, 62(19), 46514664.CrossRefGoogle Scholar
Dewan, M., Kumar, A., Saxena, A., De, A. & Mozumdar, S. (2012) Biginelli reaction catalyzed by copper nanoparticles. Plos One, 7(8), e43078.CrossRefGoogle ScholarPubMed
Dijs, I.J., van Ochten, H.L., Van der Heijden, A.J., Geus, J.W. & Jenneskens, L.W. (2003) The catalytic performance of sulphonated cross-linked polystyrene beads in the formation of isobornyl acetate. Applied Catalysis A: General, 241(1–2), 185203.CrossRefGoogle Scholar
Divakar, D., Manikandan, D., Rupa, V., Preethi, E.L., Chandrasekar, R. & Sivakumar, T. (2007) Palladium-nanoparticle intercalated vermiculite for selective hydrogenation of α, β-unsaturated aldehydes. Journal of Chemical Technology & Biotechnology, 82(3), 253258.CrossRefGoogle Scholar
Eremin, K., Stenger, J., Huang, J.F., Aspuru-Guzik, A., Betley, T., Vogt, L., Kassal, I., Speakman, S. & Khandekar, N. (2008) Examination of pigments on Thai manuscripts: the first identification of copper citrate. Journal of Raman Spectroscopy, 39(8), 10571065.CrossRefGoogle Scholar
Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. editors (2008) Handbook of Heterogeneous Catalysis. Wiley-VCH, Weinheim, Germany, 3865 pp.CrossRefGoogle Scholar
Fedorova, O.V., Valova, M.S., Titova, Y.A., Ovchinnikova, I.G., Grishakov, A.N., Uimin, M.A., Mysik, A.A., Ermakov, A.E., Rusinov, G.L. & Charushin, V.N. (2011) Catalytic effect of nanosized metal oxides in the Biginelli reaction. Kinetics and Catalysis, 52(2), 226233.CrossRefGoogle Scholar
Fu, N.Y., Yuan, Y.F., Cao, Z., Wang, S.W., Wang, J.T. & Peppe, C. (2002) Indium (III) bromide-catalyzed preparation of dihydropyrimidinones: improved protocol conditions for the Biginelli reaction. Tetrahedron, 58(24), 48014807.CrossRefGoogle Scholar
Ghosh, A., Saha, R., Ghosh, S.K., Mukherjee, K., & Saha, B. (2013) Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: A kinetic approach. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 109, 5567.CrossRefGoogle ScholarPubMed
Gui, J., Liu, D., Wang, C., Lu, F., Lian, J., Jiang, H. & Sun, Z. (2009) One-pot synthesis of 3, 4-dihydropyrimidin-2 (1H)-ones catalyzed by acidic ionic liquids under solvent-free conditions. Synthetic Communications, 39(19), 34363443.CrossRefGoogle Scholar
Kabadagi, A., Chikkamath, S., Kobayashi, S., & Manjanna, J. (2020) Organo-modified Fe-montmorillonite as a solid acid catalyst for reduction of nitroarenes and Biginelli reactions. Applied Clay Science, 189, 105518.CrossRefGoogle Scholar
Kakaei, S., Sid Kalal, H. & Hoveidi, H. (2015) Ultrasound assisted one-pot synthesis of dihydropyrimidinones using holmium chloride as catalyst. Journal of Sciences, 26(2), 117123.Google Scholar
Kalbasi, R.J., Massah, A.R. & Daneshvarnejad, B. (2012) Preparation and characterization of bentonite/PS-SO3H nanocomposites as an efficient acid catalyst for the Biginelli reaction. Applied Clay Science, 55, 19.CrossRefGoogle Scholar
Kappe, C.O. (2000) Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Accounts of Chemical Research, 33(12), 879888.CrossRefGoogle ScholarPubMed
Kets, E.P.W., IJpelaar, P.J., Hoekstra, F.A. & Vromans, H. (2004) Citrate increases glass transition temperature of vitrified sucrose preparations. Cryobiology, 48(1), 4654.CrossRefGoogle ScholarPubMed
Key, R.J., Tengco, J.M.M., Smith, M.D. & Vannucci, A.K. (2019) A Molecular/Heterogeneous Nickel Catalyst for Suzuki–Miyaura Coupling. Organometallics, 38(9), 20072014.CrossRefGoogle Scholar
Khosropour, A.R., Khodaei, M.M. & Beygzadeh, M. (2007) Highly convenient one-pot conversion of aryl acylals or aryl aldehyde bisulfites into dihydropyrimidones using Bi(NO3)3⋅5H2O. Heteroatom Chemistry, 18(6), 684687.CrossRefGoogle Scholar
Kour, G., Gupta, M., Paul, S. & Gupta, V.K. (2014) SiO2–CuCl2: An efficient and recyclable heterogeneous catalyst for one-pot synthesis of 3, 4-dihydropyrimidin-2(1H)-ones. Journal of Molecular Catalysis A: Chemical, 392, 260269.CrossRefGoogle Scholar
Kumar, V.N., Someshwar, P., Reddy, P.N., Reddy, Y.T. & Rajitha, B. (2005) Copper dipyridine dichloride as a mild and efficient catalyst for a one pot condensation bigenelli reaction. Journal of Heterocyclic Chemistry, 42(5), 10171019.CrossRefGoogle Scholar
Legeay, J.C., Eynde, J.J.V., Toupet, L. & Bazureau, J.P. (2007) A three-component condensation protocol based on ionic liquid phase bound acetoacetate for the synthesis of Biginelli 3, 4-dihydropyrimidine-2 (1H)-ones. Arkivoc, 3, 1328.Google Scholar
Li, P., Wen, B., Yu, F., Zhu, M., Guo, X., Han, Y., Kang, L., Huang, X., Dan, J., Ouyang, F. & Dai, B. (2016) High efficient nickel/vermiculite catalyst prepared via microwave irradiation-assisted synthesis for carbon monoxide methanation. Fuel 171, 263269.CrossRefGoogle Scholar
Li, Y., Tan, T., Zhao, Y., Wei, Y., Wang, D., Chen, R. & Tao, L. (2020) Anticancer Polymers via the Biginelli Reaction. ACS Macro Letters, 9(9), 12491254. https://doi.org/10.1021/acsmacrolett.0c00496CrossRefGoogle Scholar
Liu, C.J. & Wang, J.D. (2009) Copper(II) Sulfamate: An Efficient Catalyst for the One-Pot Synthesis of 3,4-Dihydropyrimidine-2(1H)-ones and thiones. Molecules, 14, 763770.CrossRefGoogle ScholarPubMed
Ma, L., Su, X., Xi, Y., Wei, J., Liang, X., Zhu, J. & He, H. (2019) The structural change of vermiculite during dehydration processes: A real-time in-situ XRD method. Applied Clay Science, 183, 105332.CrossRefGoogle Scholar
Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 110.CrossRefGoogle Scholar
Madejová, J., Gates, W.P. & Petit, S. (2017) IR spectra of clay minerals. Pp. 107149 in: Developments in Clay Science (Gates, W.P., Kloprogge, J.T., Madejová, J. & Bergaya, F., editors). Elsevier, Amsterdam.Google Scholar
Mao, T., Yang, L., Liu, G., Wei, Y., Gou, Y., Wang, J. & Tao, L. (2019) Ferrocene-Containing Polymer via the Biginelli Reaction for In Vivo Treatment of Oxidative Stress Damage. ACS Macro Letters, 8(6), 639645.CrossRefGoogle Scholar
Marosz, M., Kowalczyk, A., & Chmielarz, L. (2020). Modified vermiculites as effective catalysts for dehydration of methanol and ethanol. Catalysis Today, 355, 466475.CrossRefGoogle Scholar
Mitsudome, T., Mikami, Y., Ebata, K., Mizugaki, T., Jitsukawa, K. & Kaneda, K. (2008) Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols. Chemical Communications, 39, 48044806.CrossRefGoogle Scholar
Moraes, D.S., Miranda, L.C.R., Angélica, R.S., Rocha Filho, G.N. & Zamian, J.R. (2018) Functionalization of bentonite and vermiculite after the creation of structural defects through an acid leaching process. Journal of the Brazilian Chemical Society, 29(2), 320327.Google Scholar
Moussa, S., Mehri, A., & Badraoui, B. (2020) Magnesium modified calcium hydroxyapatite: An efficient and recyclable catalyst for the one-pot Biginelli condensation. Journal of Molecular Structure, 1200, 127111.CrossRefGoogle Scholar
Nagendrappa, G. (2011) Organic synthesis using clay and clay-supported catalysts. Applied Clay Science, 53(2), 106138. https://doi.org/10.1016/j.clay.2010.09.016CrossRefGoogle Scholar
Nasresfahani, Z. & Kassaee, M.Z. (2018) Cu (II) immobilized on mesoporous organosilica as an efficient and reusable nanocatalyst for one-pot Biginelli reaction under solvent-free conditions. Applied Organometallic Chemistry, 32(2), e4106. https://doi.org/10.1002/aoc.4106CrossRefGoogle Scholar
Nezhad, E.R., Abbasib, Z. & Sajjadifara, S. (2015) Fe2+ supported on hydroxyapatite-core-shell--Fe2O3 nanoparticles: As a novel, efficient and magnetically-recoverable catalyst for the synthesis of dihydropyrimidinones derivatives. Scentia Iranica C, 22(3), 903910.Google Scholar
Panda, S., Khanna, P. & Khanna, L. (2012) Biginelli reaction: a green perspective. Current Organic Chemistry, 16(4), 507520.CrossRefGoogle Scholar
Pasunooti, K.K., Chai, H., Jensen, C.N., Gorityala, B.K., Wang, S. & Liu, X.W. (2011) A microwave-assisted, copper-catalyzed three-component synthesis of dihydropyrimidinones under mild conditions. Tetrahedron Letters, 52(1), 8084.CrossRefGoogle Scholar
Pazourková, L., Martynková, G.S., Hundáková, M. & Barošová, H. (2014). Montmorillonite and vermiculite modified by N-vinylcaprolactam and poly (N-Vinylcaprolactam) preparation and characterization. Nanocon-2014”, Brno, Czech Republic, pp. 57.Google Scholar
Qiu, Y., Sun, H., Ma, Z. & Xia, W. (2014) Efficient, stable, and reusable Lewis acid–surfactant-combined catalyst: One-pot Biginelli and solvent-free esterification reactions. Journal of Molecular Catalysis A: Chemical, 392, 7682.CrossRefGoogle Scholar
Roy, D.K. & Bordoloi, M. (2006) Synthesis of some substituted 2-oxo-1, 2, 3, 4-tetrahydropyrimidines (3, 4-dihydropyrimidin-2(1H)-ones) and 2-thioxo-1, 2, 3, 4-tetrahydropyrimidines, catalyzed by tin (II) chloride dihydrate and tin (II) iodide under microwave irradiation. Indian Journal of Chemistry, 45B, 10671071Google Scholar
Sibi, M.P. & Cook, G.R. (2000) Copper Lewis acids. Pp. 543–474 in: Lewis Acids in Organic Synthesis (Yamamoto, H., editor). Wiley-VCH, Weinheim, Germany.CrossRefGoogle Scholar
Singh, V., Kaur, S., Ratti, R., Kad, G.L. & Singh, J. (2010) Acidic task specific ionic liquid catalyzed synthesis of dihydropyrimidinones. Indian Journal of Chemistry, 49B(5), 611616.Google Scholar
Song, D., Wang, R., Chen, Y., Zhang, S., Liu, C. & Luo, G. (2008) Copper (II) trifluoroacetate catalyzed synthesis of 3, 4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Reaction Kinetics and Catalysis Letters, 95(2), 385390.CrossRefGoogle Scholar
Suzuki, I., Suzumura, Y. & Takeda, K. (2006) Metal triflimide as a Lewis acid catalyst for Biginelli reactions in water. Tetrahedron Letters, 47(45), 78617864.CrossRefGoogle Scholar
Tanner, A.O. (2017) Vermiculite [advance release]. Pp. 82.182.6 in: Metals and Minerals: U.S. Geological Survey Minerals Yearbook 2017 (van Oss, H.G., editor) US Geological Survey.Google Scholar
Wang, L., Qian, C., Tian, H. & Ma, Y. (2003) Lanthanide triflate catalyzed one-pot synthesis of dihydropyrimidin-2(1H)-thiones by a three-component of 1, 3-dicarbonyl compounds, aldehydes, and thiourea using a solvent-free Biginelli condensation. Synthetic Communications, 33(9), 14591468.CrossRefGoogle Scholar
Wang, M., Jiang, H., Song, Z., & Gong, H. (2009) Copper nitrate catalyzed three-component one-pot synthesis of 3, 4-Dihydropyrimidin-2(1H)-Ones. Preparative Biochemistry & Biotechnology, 39(4), 372379.CrossRefGoogle ScholarPubMed
Yao, N., Lu, M., Liu, X.B., Tan, J. & Hu, Y.L. (2018) Copper-doped mesoporous silica supported dual acidic ionic liquid as an efficient and cooperative reusability catalyst for Biginelli reaction. Journal of Molecular Liquids, 262, 328335.CrossRefGoogle Scholar
Zhang, G., Yang, G. & Ma, J.S. (2006) Versatile framework solids constructed from divalent transition metals and citric acid: syntheses, crystal structures, and thermal behaviors. Crystal Growth & Design, 6(2), 375381.CrossRefGoogle Scholar
Supplementary material: File

Torres-Méndez and López-Mayorga supplementary material

Torres-Méndez and López-Mayorga supplementary material

Download Torres-Méndez and López-Mayorga supplementary material(File)
File 1.7 MB