Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T16:28:56.196Z Has data issue: false hasContentIssue false

Sidon Sets are Proportionally Sidon with Small Sidon Constants

Published online by Cambridge University Press:  11 December 2018

Kathryn E. Hare
Affiliation:
Dept. of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Email: [email protected][email protected]
Robert (Xu) Yang
Affiliation:
Dept. of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Email: [email protected][email protected]

Abstract

In his seminal work on Sidon sets, Pisier found an important characterization of Sidonicity: A set is Sidon if and only if it is proportionally quasi-independent. Later, it was shown that Sidon sets were proportionally “special” Sidon in several other ways. Here, we prove that Sidon sets in torsion-free groups are proportionally $n$-degree independent, a higher order of independence than quasi-independence, and we use this to prove that Sidon sets are proportionally Sidon with Sidon constants arbitrarily close to one, the minimum possible value.

Type
Article
Copyright
© Canadian Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was supported in part by NSERC grant 2016-03719. This paper is in final form and no version of it will be submitted for publication elsewhere.

References

Bourgain, J., Propriétés de décomposition pour les ensembles de Sidon . Bull. Soc. Math. France 111(1983), 421428.Google Scholar
Bourgain, J., Subspaces of N , arithmetical diameter and Sidon sets . In: Probability in Banach spaces V , Lecture Notes in Math., 1153, Springer, Berlin, 1985, pp. 96127. https://doi.org/10.1007/BFb0074947 Google Scholar
Bourgain, J., Sidon sets and Riesz products . Ann. Inst. Fourier (Grenoble) 35(1985), 137148.Google Scholar
Graham, C. C. and Hare, K. E., Characterizing Sidon sets by interpolation properties of subsets . Colloq. Math. 112(2008), 175199. https://doi.org/10.4064/cm112-2-1 Google Scholar
Graham, C. C. and Hare, K. E., Interpolation and Sidon sets for compact groups , CMS Books in Math., Springer, New York, 2013. https://doi.org/10.1007/978-1-4614-5392-5 Google Scholar
Grow, D., Sidon sets and I 0 sets . Colloq. Math. 53(1987), 269270. https://doi.org/10.4064/cm-53-2-269-270 Google Scholar
Hare, K. E. and Ramsey, L. T., The relationship between 𝜀-Kronecker and Sidon sets . Canad. Math. Bull. 59(2016), 521527. https://doi.org/10.4153/CMB-2016-002-3 Google Scholar
Li, D. and Queffélec, H., Introduction à l’etude des espaces de Banach. Analyse et probabilités , Cours Spécalisés, 12, Société Mathématique de France, Paris, 2004.Google Scholar
López, J. and Ross, K., Sidon sets , Lecture Notes in Pure and Applied Mathematics, 13, Marcel Dekker, New York, 1975.Google Scholar
Malliavin-Brameret, M. P. and Malliavin, P., Caractérisation arithmétique des ensembles de Helson . C.R.Acad. Sci. Paris Sér. A–B 264(1967), A192A193.Google Scholar
Neuwirth, S., The maximum modulus of a trigonometric trinomial . J. Anal. Math. 104(2008), 371396. https://doi.org/10.1007/s11854-008-0028-2 Google Scholar
Pisier, G., De nouvelles caractérisations des ensembles de Sidon . In: Mathematical analysis and applications, Part B , Adv. Math. Suppl. Studies, 7b, Academic Press, New York-London, 1981, pp. 685726.Google Scholar
Pisier, G., Conditions d’ entropie et caractérisations arithmétiques des ensembles de Sidon . Proc. Conf. on Modern Topics in Harmonic Analysis (Torino/Milano) . Ist. Naz. Alta Mat. Francesco Severi, Rome, 1983, pp. 911944.Google Scholar
Pisier, G., Arithmetic characterizations of Sidon sets . Bull. Amer. Math. Soc. 8(1983), 8789. https://doi.org/10.1090/S0273-0979-1983-15092-9 Google Scholar
Ramsey, L. T., Comparisons of Sidon and I 0 sets . Colloq. Math. 70(1996), 103132. https://doi.org/10.4064/cm-70-1-103-132 Google Scholar