Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T10:14:47.819Z Has data issue: false hasContentIssue false

The Shifted Turán Sieve Method on Tournaments

Published online by Cambridge University Press:  11 April 2019

Wentang Kuo
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Email: [email protected]@[email protected]
Yu-Ru Liu
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Email: [email protected]@[email protected]
Sávio Ribas
Affiliation:
Departamento de Matemática, Universidade Federal de Ouro Preto, Ouro Preto, MG, 35400-000, Brazil Email: [email protected]
Kevin Zhou
Affiliation:
Department of Pure Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada Email: [email protected]@[email protected]

Abstract

We construct a shifted version of the Turán sieve method developed by R. Murty and the second author and apply it to counting problems on tournaments. More precisely, we obtain upper bounds for the number of tournaments which contain a fixed number of restricted $r$-cycles. These are the first concrete results which count the number of cycles over “all tournaments”.

MSC classification

Secondary: 11N35: Sieves
Type
Article
Copyright
© Canadian Mathematical Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The research of the first and second authors were partially supported by NSERC discovery grants. The research of the third author was partially supported by CAPES and CSF/CNPQ, Brazil.

References

Beineke, L. W. and Harary, F., The maximum number of strongly connected subtournaments . Canad. Math. Bull. 8(1965), 491498.Google Scholar
Chow, T. Y., The combinatorics behind number-theoretic sieves . Adv. Math. 138(1998), 293305.Google Scholar
Erdös, P. and Szekeres, G., A combinatorial problem in geometry . Compositio Math. 2(1965), 463470.Google Scholar
Gale, D., On the number of faces of a convex polygon . Canad. J. Math. 16(1964), 1217.Google Scholar
Gutin, G., Rafiey, A., and Yeo, A., On n-partite tournaments with unique n-cycle . Graphs Combin. 22(2006), 241249.Google Scholar
Hardy, G. H. and Ramanujan, S., The normal number of prime factors of a number n . Quart. J. Pure Appl. Math. 48(1917), 7697.Google Scholar
Kendall, M. G. and Babington Smith, B., On the method of paired comparisons . Biometrika 33(1940), 239251.Google Scholar
Kotzig, A., Sur le nombre des 4-cycles dans un tournoi . Mat. Časopis Sloven. Akad. Vied 18(1968), 247254.Google Scholar
Liu, Y.-R. and Murty, M. R., The Turán sieve method and some of its applications . J. Ramanujan Math. Soc. 14(1999), 2135.Google Scholar
Liu, Y.-R. and Murty, M. R., Sieve Methods in combinatorics . J. Combin. Theory Ser. A 111(2005), 123.Google Scholar
Lovász, L., Combinatorial Problems and Exercises . North-Holland Pub. Co., Amsterdam, 1993.Google Scholar
Moon, J. W., Topics on Tournaments . Holt, Rinehart and Winston Inc., New York, 1968.Google Scholar
Moon, J. W., Uncovered nodes and 3-cycles in tournaments . Australas. J. Combin. 7(1993), 157173.Google Scholar
Moon, J. W., On the score sequence of an n-partite tournament . Canad. Math. Bull. 5(1962), 5158.Google Scholar
Moon, J. W. and Moser, L., On the distribution of 4-cycles in random bipartite tournaments . Canad. Math. Bull. 5(1962), 512.Google Scholar
Moran, P. A. P., On the method of paired comparisons . Biometrika 34(1947), 363365.Google Scholar
Savchenko, S. V., On 5-cycles and 6-cycles in regular n-tournaments . J. Graph Theory 83(2016), 4477.Google Scholar
Szele, T., Kombinatorikai vizsgálatok az irányított teljes gráffal kapcsolatban . Mat. Fiz. Lapok 50(1943), 223256. For a German translation, see Kombinatorische Untersuchungen über gerichtete vollständige Graphen, Publ. Math. Debrecen 13(1966), 145–168.Google Scholar
Tabib, C., The number of 4-cycles in regular tournaments . Utilitas Math. 22(1982), 315322.Google Scholar
Turán, P., On a theorem of Hardy and Ramanujan . J. London Math. Soc. 9(1934), 274276.Google Scholar
Volkmann, L., On cycles in regular 3-partite tournaments . Discrete Math. 306(2006), 11981206.Google Scholar
Volkmann, L., Longest cycles in almost regular 3-partite tournaments . Discrete Math. 306(2006), 29312942.Google Scholar
Volkmann, L. and Winzen, S., Cycles through a given arc and certain partite sets in almost regular multipartite tournaments . Discrete Math. 283(2004), 217229.Google Scholar
Wilson, R. J., The Selberg sieve for a lattice. In: ‘Combinatorial Theory and Its Applications, Balatofüred (Hungary)’ . Colloq. Math. Soc. János Bolyai 4(1969), 11411149.Google Scholar
Zhang, K. M., Vertex even-pancyclicity in bipartite tournaments . Nanjing Daxue Xuebao Shuxue Bannian Kan 1(1984), 8588.Google Scholar