Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T11:35:17.732Z Has data issue: false hasContentIssue false

T2-Groups And a Characterization of the Finite Groups of Moebius Transformations

Published online by Cambridge University Press:  20 November 2018

P. J. Lorimer*
Affiliation:
University of Canterbury, Christchurch, New Zealand
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In recent years a number of algebraic characterizations of the groups of Moebius transformations over finite fields have been given in the literature; see (1, 3, 6). H. W. E. Schwerdtfeger has noticed (4) that the group G of Moebius transformations over the real, complex, and certain other fields has the property:

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Brauer, R., Suzuki, M., and Wall, G. E., A characterisation of the one-dimensional unimodular projective groups over finite fields, III. J. Math., 2 (1958), 718–45.Google Scholar
2. Burnside, W., Theory of groups of finite order (New York, 1955).Google Scholar
3. Gorenstein, Daniel and Walter, John H., On finite groups with dihedral Sylow 2-subgroups, III. J. Math., 6, (1962), 533–93.Google Scholar
4. E.|Schwerdtfeger, H. W., On a property of the Moebius group, Annali di Mat. (IV), 54 (1961), 2332.Google Scholar
5. E.|Schwerdtfeger, H. W. Über eine spezielle Klasse Frobeniusscher Gruppen, Arch. d. Math., 13 (1962), 283–9.Google Scholar
6. Zassenhaus, H., Kennzeichnung endlicher linear er Gruppen als Per mutations gruppen, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 1740.Google Scholar