Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T14:37:16.430Z Has data issue: false hasContentIssue false

Structure of Semigroups

Published online by Cambridge University Press:  20 November 2018

Hans-Jürgen Hoehnke*
Affiliation:
Deutsche Akademie der Wis sens chaften zu Berlin, Forschungsgemeinschaft, Institut für Reine Mathematik
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The treatment of semigroups given in a previous paper (3) is based upon representations of a semigroup by means of transformations of a set (cf. also 12). In this paper we try to remove the assumption of the existence of a zero element proposed in (3). In accordance with our general programme explained at the beginning of (3) we utilize certain minimum conditions in order to gain more information on the structure of semigroups.

Our main results are structure theorems on primitive semigroups which have irreducible right ideals generated by idempotents (§§15-17). As we have shown in (5), these theorems permit the explicit construction of primitive semigroups.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Birkhoff, G., Lattice theory (New York, 1948).Google Scholar
2. Clifford, A. H., Semigroups without nilpotent ideals, Amer. J. Math., 71 (1949), 834844.Google Scholar
3. Hoehnke, H.-J., Zur Strukturtheorie der Halbgruppen, Math. Nachr., 26 (1963), 113.Google Scholar
4. Hoehnke, H.-J., Eine Charakterisierung des O-Radikals einer Halbgruppe, Publ. Math. Debrecen, 11 (1964), 7273.Google Scholar
5. Hoehnke, H.-J., Über antiautomorphe und involutorische primitive Halbgruppen, Czechoslovak Math. J., 15 (90) (1965), 5063.Google Scholar
6. Hoehnke, H.-J., Über das untere und obere Radikal einer Halbgruppe, Math. Z., 89 (1965), 300311.Google Scholar
7. Jacobson, N., Structure of rings (Providence, 1956).Google Scholar
8. Kertész, A., A characterization of the Jacobson radical, Proc. Amer. Math. Soc, 14 (1963), 595597.Google Scholar
9. Leavitt, W. G., Note on two problems of A. Kertész, Publ. Math. Debrecen, 6 (1959), 8385.Google Scholar
10. Rédei, L., Algebra, I (Leipzig, 1959).Google Scholar
11. Seidel, H., Über das Radikal einer Halbgruppe, Math. Nachr., 29 (1965), 255263.Google Scholar
12. Tully, E. J. Jr., Representation of a semigroup by transformations acting transitively on a set, Amer. J. Math., 83 (1961), 533541.Google Scholar