Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T13:34:20.175Z Has data issue: false hasContentIssue false

On the Degenerate Cauchy Problem

Published online by Cambridge University Press:  20 November 2018

R. W. Carroll
Affiliation:
Rutgers University, University of Illinois, and University of Saskatchewan, Regina Campus
C. L. Wang
Affiliation:
Rutgers University, University of Illinois, and University of Saskatchewan, Regina Campus
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The problem treated here is an abstract version of the Cauchy problem for an equation of mixed type in the hyperbolic region with initial data on the parabolic line (cf. 2, 3, 5, 11, 13, 14, 15, 16, 21, 27). A more complete bibliography may be found in (3, 5, 18). We begin with the equation (6)

(1.1)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Arens, R., The analytic functional calculus in commutative topological algebras, Pacific J. Math., 11 (1961), 405429.Google Scholar
2. Berezin, I., On the Cauchy problem for linear equations of the second order with initial data on the parabolic line, Mat. Sbornik, 24 (1949), 301320.Google Scholar
3. Bers, L., Mathematical aspects of subsonic and transonic gas dynamics (New York, 1958).Google Scholar
4. Bourbaki, N., Integration, Chap. 1-4; Intégration des mesures, Chap. 5; Integration vectorielle, Chap. 6 (Paris, 1952, 1956, 1959).Google Scholar
5. Carroll, R., Some degenerate Cauchy problems with operator coefficients, Pacific J. Math., 13 (1963), 471485.Google Scholar
6. Carroll, R., On the spectral determination of the Green's operator, to appear.Google Scholar
7. Carroll, R., On the singular Cauchy problem, J. Math, and Mech., 12 (1963), 69102.Google Scholar
8. Carroll, R., On some singular quasi linear Cauchy problems, Math. Z., 8 (1963), 135154.Google Scholar
9. Carroll, R. and Neuwirth, J., Quelques théorèmes d'unicité pour des équations différentielles opérationnelles, Compt. Rend. Paris, 255 (1962), 28852887.Google Scholar
10. Coddington, E. and Levinson, N., Theory of ordinary differential equations (New York, 1955).Google Scholar
11. Conti, R., Sul problema di Cauchy per Vequazione y2ak2(x, y)txx — tyy = f(x, y, t, tx, ty) con i dati sulla linea parabolica, Annali di Mat., 81 (1950), 303326.Google Scholar
12. Dieudonn, J.é, Foundations of modern analysis (New York, 1960). 12a. J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien (Paris, 1957).Google Scholar
13. Frankl, F., On Cauchy's problem for equations of mixed elliptic hyperbolic type with initial data on the transition line, Izvestia Akad. Nauk, SwSSR, 8 (1944), 195224.Google Scholar
14. Hellwig, G., Anfangs- und Randwertprobleme bei partiellen Differentialgleichungen von wechselndem Typus auf den Randern, Math. Z., 58 (1953), 337357.Google Scholar
15. Krasnov, M., Mixed boundary value problems for degenerate linear hyperbolic differential equations of the second order, Mat. Sbornik, 49 (81) (1959), 2984.Google Scholar
16. Krasnov, M., Mixed boundary value problems and the Cauchy problem for degenerate hyperbolic equations, Doklady Akad. Nauk, SSSR, 107 (1956), 789792.Google Scholar
17. Langer, R., The asymptotic solutions of ordinary linear differential equations of the second order, with special reference to a turning point, Trans. Amer. Math. Soc, 67 (1949), 461490.Google Scholar
18. Lions, J., Equations différentielles opérationnelles et problèmes aux limites (Berlin, 1961).Google Scholar
19. Maurin, K., Metody przestrzeni Hilberta (Warsaw, 1959).Google Scholar
20. Morel, H., Introduction de poids dans l'étude de problèmes aux limites, Annales Inst. Fourier, 12 (1962), 305413.Google Scholar
21. Protter, M., The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Can. J. Math., 6 (1954), 542553.Google Scholar
22. Rickart, C., General theory of Banach algebras (Princeton, 1960).Google Scholar
23. Sansone, G. and Conti, R., Equazione differ enziali non lineari (Rome, 1956).Google Scholar
24. Schwartz, L., Les équations d'évolution liées au produit de composition, Annales Inst. Fourier, 2 (1950), 1949.Google Scholar
25. Visik, M., The Cauchy problem for equations with operator coefficients; mixed boundary value problems for systems of differential equations and approximation methods for their solution, Mat. Sbornik, 39 (81) (1956), 51148.Google Scholar
26. Wang, C., On the degenerate Cauchy problem for linear hyperbolic equations of the second order, Rutgers University, Ph.D. thesis (1964).Google Scholar
27. Weinstein, A., The singular solutions and the Cauchy problem for generalized Tricomi equations, Comm. Pure and Appl. Math., 7 (1954), 105116.Google Scholar