Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T09:39:22.673Z Has data issue: false hasContentIssue false

The Group Ring Of a Class Of Infinite Nilpotent Groups

Published online by Cambridge University Press:  20 November 2018

S. A. Jennings*
Affiliation:
University of British Columbia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction. In this paper we study the (discrete) group ring Γ of a finitely generated torsion free nilpotent group over a field of characteristic zero. We show that if Δ is the ideal of Γ spanned by all elements of the form G − 1, where G ∈ , then

and the only element belonging to Δw for all w is the zero element (cf. (4.3) below).

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1955

References

1. Hall, P., A contribution to the theory of groups of prime power orders, Proc. London Math. Soc. (2), 36 (1933), 2995.Google Scholar
2. Hausdorff, F., Die symbolische Exponentialformel in der Gruppentheorie, Sitz. der Sachsischen Akad. Wiss. (Math.-phys. Klasse), 58 (1906), 1948.Google Scholar
3. Hirsch, K. A., Infinite soluble groups I, Proc. London Math. Soc. (2) 44 (1938), 5360.Google Scholar
4. Hirsch, K. A., II, ibid., 336–345.Google Scholar
5. Hirsch, K. A., III, ibid., 49 (1946), 184–194.Google Scholar
6. Jennings, S. A., The group ring of a p-group over a modular field, Trans. Amer. Math. Soc, 50 (1941), 175185.Google Scholar
7. Magnus, W., Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring, Math. Ann., 111 (1935), 259280.Google Scholar
8. Magnus, W., Ueber Beziehungen zwischen höheren Kommutatoren, J. reine angew. Math., 177 (1937), 105115.Google Scholar
9. Magnus, W., Ueber Gruppen und zugeordnete Liesche Ringe, ibid., 182 (1940), 142–149.Google Scholar
10. Malcev, A. I., On a class of homogeneous spaces, Izvestiya Akad. Nauk SSSR Ser. Mat., 13 (1949) 932 (AMS Translation No. 39).Google Scholar
11. Malcev, A. I., Nilpotent torsion-free groups, ibid., 201–212.Google Scholar