Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T20:03:21.882Z Has data issue: false hasContentIssue false

Approximation in the Zygmund and Hölder classes on $\mathbb {R}^n$

Published online by Cambridge University Press:  13 September 2021

Eero Saksman
Affiliation:
Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, Helsinki FIN-00014, Finland e-mail: [email protected]
Odí Soler i Gibert*
Affiliation:
Institut für Mathematik, Universität Würzburg, Würzburg 97074, Germany
*

Abstract

We determine the distance (up to a multiplicative constant) in the Zygmund class $\Lambda _{\ast }(\mathbb {R}^n)$ to the subspace $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n).$ The latter space is the image under the Bessel potential $J := (1-\Delta )^{{-1}/2}$ of the space $\mathbf {bmo}(\mathbb {R}^n)$ , which is a nonhomogeneous version of the classical $\mathrm {BMO}$ . Locally, $\mathrm {J}_{}(\mathbf {bmo})(\mathbb {R}^n)$ consists of functions that together with their first derivatives are in $\mathbf {bmo}(\mathbb {R}^n)$ . More generally, we consider the same question when the Zygmund class is replaced by the Hölder space $\Lambda _{s}(\mathbb {R}^n),$ with $0 < s \leq 1$ , and the corresponding subspace is $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ , the image under $(1-\Delta )^{{-s}/2}$ of $\mathbf {bmo}(\mathbb {R}^n).$ One should note here that $\Lambda _{1}(\mathbb {R}^n) = \Lambda _{\ast }(\mathbb {R}^n).$ Such results were known earlier only for $n = s = 1$ with a proof that does not extend to the general case.

Our results are expressed in terms of second differences. As a by-product of our wavelet-based proof, we also obtain the distance from $f \in \Lambda _{s}(\mathbb {R}^n)$ to $\mathrm {J}_{s}(\mathbf {bmo})(\mathbb {R}^n)$ in terms of the wavelet coefficients of $f.$ We additionally establish a third way to express this distance in terms of the size of the hyperbolic gradient of the harmonic extension of f on the upper half-space $\mathbb {R}^{n +1}_+$ .

Type
Article
Copyright
© Canadian Mathematical Society 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

First author is supported by the Finnish Academy grant 1309940. Second author is supported by the Generalitat de Catalunya grant 2017 SGR 395, the Spanish Ministerio de Ciencia e Innovación projects MTM2014-51824-P and MTM2017-85666-P, and the European Research Council project CHRiSHarMa no. DLV-682402.

References

Aimar, H. and Bernardis, A., Wavelet characterization of functions with conditions on the mean oscillation. In: C. E. D'Attellis, E. M. Fernández-Berdaguer (eds), Wavelet theory and harmonic analysis in applied sciences (Buenos Aires, 1995), Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 1997, pp. 1532. http://doi.org/10.1007/978-1-4612-2010-7_2 Google Scholar
Donaire, J. J., Llorente, J. G., and Nicolau, A., Differentiability of functions in the Zygmund class. Proc. Lond. Math. Soc. (3) 108(2014), no. 1, 133158. http://doi.org/10.1112/plms/pdt016 CrossRefGoogle Scholar
Frazier, M. and Jawerth, B., A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1990), no. 1, 34170. http://doi.org/10.1016/0022-1236(90)90137-A CrossRefGoogle Scholar
Garnett, J. B. and Jones, P. W., The distance in BMO to $\ {L}^{\infty }$ . Ann. of Math. (2) 108(1978), no. 2, 373393. http://doi.org/10.2307/1971171 CrossRefGoogle Scholar
Ghatage, P. G. and Zheng, D. C., Analytic functions of bounded mean oscillation and the Bloch space. Integral Equations Operator Theory 17(1993), no. 4, 501515. http://doi.org/10.1007/BF01200391 CrossRefGoogle Scholar
Lemarié, P. G. and Meyer, Y., Ondelettes et bases hilbertiennes. Rev. Mat. Iberoam. 2(1986), nos. 1–2, 118. http://doi.org/10.4171/RMI/22 CrossRefGoogle Scholar
Makarov, N. G., Smooth measures and the law of the iterated logarithm. Izv. Akad. Nauk SSSR Ser. Mat. 53(1989), no. 2, 439446. http://doi.org/10.1070/IM1990v034n02ABEH000664 Google Scholar
Meyer, Y., Wavelets and operators, Cambridge Studies in Advanced Mathematics, 37, Cambridge University Press, Cambridge, 1992. Translated from the 1990 French original by D. H. Salinger. http://doi.org/10.1017/cbo9780511623820 Google Scholar
Nicolau, A. and Soler i Gibert, O., Approximation in the Zygmund class. J. Lond. Math. Soc. 101(2020), no. 1, 226246. http://doi.org/10.1112/jlms.12267 CrossRefGoogle Scholar
Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, NJ, 1971. http://doi.org/10.1515/9781400883882 Google Scholar
Stein, E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. http://doi.org/10.1515/9781400883929 Google Scholar
Strichartz, R. S., Bounded mean oscillation and Sobolev spaces. Indiana Univ. Math. J. 29(1980), no. 4, 539558. http://doi.org/10.1512/iumj.1980.29.29041 CrossRefGoogle Scholar
Triebel, H., Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010. Reprint of 1983 edition, Also published in 1983 by Birkhäuser Verlag. http://doi.org/10.1007/978-3-0346-0416-1 Google Scholar
Triebel, H., Theory of function spaces IV, Monographs in Mathematics, 107, Birkhäuser/Springer Basel AG, Basel, 2020. http://doi.org/10.1007/978-3-030-35891-4 Google Scholar
Zygmund, A., Smooth functions, Duke Math. J. 12(1945), no. 1, 4776. http://doi.org/10.1215/s0012-7094-45-01206-3 CrossRefGoogle Scholar