Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T18:30:39.698Z Has data issue: false hasContentIssue false

Where are somatosensory representations stored and reactivated?

Published online by Cambridge University Press:  20 August 2007

Katja Fiehler
Affiliation:
Department of Experimental and Biological Psychology, Philipps University–Marburg, D-35032 Marburg, Germany. [email protected]@[email protected]://www.uni-marburg.de/fb04/team-roesler/mitglieder/fiehlerhttp://www.uni-marburg.de/fb04/team-roesler/mitglieder/engelhttp://staff-www.uni-marburg.de/~roesler/
Annerose Engel
Affiliation:
Department of Experimental and Biological Psychology, Philipps University–Marburg, D-35032 Marburg, Germany. [email protected]@[email protected]://www.uni-marburg.de/fb04/team-roesler/mitglieder/fiehlerhttp://www.uni-marburg.de/fb04/team-roesler/mitglieder/engelhttp://staff-www.uni-marburg.de/~roesler/
Frank Rösler
Affiliation:
Department of Experimental and Biological Psychology, Philipps University–Marburg, D-35032 Marburg, Germany. [email protected]@[email protected]://www.uni-marburg.de/fb04/team-roesler/mitglieder/fiehlerhttp://www.uni-marburg.de/fb04/team-roesler/mitglieder/engelhttp://staff-www.uni-marburg.de/~roesler/

Abstract

The studies cited by Dijkerman & de Haan (D&dH) stress the distinction between perception and action within the somatosensory system but provide little information about memory functions. Recent findings by our group and by others show that the dorsal stream is also activated during short-term memory maintenance and long-term memory retrieval of haptic information. These data complement and extend the proposed model.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Connolly, J. D., Andersen, R. A. & Goodale, M. A. (2003) FMRI evidence for a “parietal reach region” in the human brain. Experimental Brain Research 153:140–45.CrossRefGoogle Scholar
Curtis, C. E. (2006) Prefrontal and parietal contributions to spatial working memory. Neuroscience 139:173–80.CrossRefGoogle ScholarPubMed
Fiehler, K., Burke, M., Bien, S. & Rösler, F. (2006) Neural substrates of movement memory based on proprioceptive information. Journal of Cognitive Neuroscience 18(Suppl. 1):108.Google Scholar
Fiehler, K., Burke, M., Engel, A., Bien, S. & Rösler, F. (in press) Kinesthetic working memory and action control within the dorsal stream. Cerebral Cortex.Google Scholar
Goodale, M. A., Jakobson, L. S. & Keillor, J. M. (1994) Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia 32:1159–78.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L. & Pietrini, P. (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293:2425–30.CrossRefGoogle ScholarPubMed
Ishai, A., Ungerleider, L. G., Martin, A. & Haxby, J. V. (2000) The representation of objects in the human occipital and temporal cortex. Journal of Cognitive Neuroscience 12(Suppl. 2):3551.CrossRefGoogle ScholarPubMed
Khader, P., Burke, M., Bien, S., Ranganath, C. & Rösler, F. (2005) Content-specific activation during associative long-term memory retrieval. NeuroImage 27:805–16.CrossRefGoogle ScholarPubMed
Khadar, P., Knoth, K., Burke, M., Ranganath, C., Bien, S. & Rösler, F. (2007) Topography and dynamics of associative long-term memory retrieval in humans. Journal of Cognitive Neuroscience 19:493512.CrossRefGoogle Scholar
Lacquaniti, F., Perani, D., Guigon, E., Bettinardi, V., Carrozzo, M., Grassi, F., Rossetti, Y. & Fazio, F. (1997) Visuomotor transformations for reaching to memorized targets: A PET study. NeuroImage 5(2):129–46.CrossRefGoogle ScholarPubMed
Macaluso, E. & Driver, J. (2003) Multimodal spatial representations in the human parietal cortex: Evidence from functional imaging. Advances in Neurology 93:219–33.Google ScholarPubMed
McClelland, J. L., McNaughton, B. L. & O'Reilly, R. C. (1995) Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review 102:419–57.CrossRefGoogle ScholarPubMed
Milner, A. D., Dijkerman, H. C., Pisella, L., McIntosh, R. D., Tilikete, C., Vighetto, A. & Rossetti, Y. (2001) Grasping the past: Delay can improve visuomotor performance. Current Biology 11:1896–901.CrossRefGoogle ScholarPubMed
Murata, A., Gallese, V., Kaseda, M. & Sakata, H. (1996) Parietal neurons related to memory-guided hand manipulation. Journal of Neurophysiology 75:2180–86.CrossRefGoogle ScholarPubMed
Ricciardi, E., Bonino, D., Gentili, C., Sani, L., Pietrini, P. & Vecchi, T. (2006) Neural correlates of spatial working memory in humans: A functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience 139:339–49.CrossRefGoogle ScholarPubMed
Rösler, F. & Heil, M. (2003) The principle of code-specific memory representations. In: Principles of learning and memory, ed. Kluwe, R. H., Lüer, G. & Rösler, F., pp. 7192. Birkhäuser.CrossRefGoogle Scholar
Stock, O., Röder, B., Burke, M., Bien, S. & Rösler, F. (2004) fMRI-activity while visually learned positions and objects are retrieved from long-term memory. NeuroImage 22(Suppl. 1):e716. (Online publication).Google Scholar
Stock, O., Röder, B., Burke, M., Bien, S. & Rösler, F. (under review) Cortical activation patterns during long-term memory retrieval of visually or haptically encoded objects and positions. Journal of Cognitive Science.Google Scholar