Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:21:11.203Z Has data issue: false hasContentIssue false

Visuomotor extrapolation

Published online by Cambridge University Press:  14 May 2008

David Whitney
Affiliation:
Department of Psychology, and The Center for Mind and Brain, University of California, Davis, CA 95618. [email protected]://mindbrain.ucdavis.edu/content/Labs/Whitney/

Abstract

Accurate perception of moving objects would be useful; accurate visually guided action is crucial. Visual motion across the scene influences perceived object location and the trajectory of reaching movements to objects. In this commentary, I propose that the visual system assigns the position of any object based on the predominant motion present in the scene, and that this is used to guide reaching movements to compensate for delays in visuomotor processing.

Type
Open Peer Commentary
Copyright
Copyright ©Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bridgeman, B. (1995) A review of the role of efference copy in sensory and oculomotor control systems. Annals of Biomedical Engineering 23(4):409–22.CrossRefGoogle ScholarPubMed
Buneo, C. A., Jarvis, M. R., Batista, A. P. & Andersen, R. A. (2002) Direct visuomotor transformations for reaching. Nature 416(6881):632–36.CrossRefGoogle ScholarPubMed
Crawford, J. D., Medendorp, W. P. & Marotta, J. J. (2004) Spatial transformations for eye-hand coordination. Journal of Neurophysiology 92(1):1019.CrossRefGoogle ScholarPubMed
De Valois, R. L. & De Valois, K. K. (1991) Vernier acuity with stationary moving Gabors. Vision Research 31(9):1619–26.CrossRefGoogle ScholarPubMed
Durant, S. & Johnston, A. (2004) Temporal dependence of local motion induced shifts in perceived position. Vision Research 44(4):357–66.CrossRefGoogle ScholarPubMed
Eagleman, D. M. & Sejnowski, T. J. (2007) Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision 7(4):3, 112.CrossRefGoogle ScholarPubMed
Gomi, H., Abekawa, N. & Nishida, S. (2006) Spatiotemporal tuning of rapid interactions between visual-motion analysis and reaching movement. Journal of Neuroscience 26(20):5301–308.CrossRefGoogle ScholarPubMed
Henriques, D. Y., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. Journal of Neuroscience 18(4):1583–94.CrossRefGoogle Scholar
Hess, C. V. (1904) Untersuchungen über den Erregungsvorgang in Sehorgan bei Kurz- und bei länger dauernder Reizung. Pflügers Archiv für die gesammte Physiologie des Menschen und Thiere 101:226–62.CrossRefGoogle Scholar
Matin, L., Boff, K. & Pola, J. (1976) Vernier offset produced by rotary target motion. Perception & Psychophysics 20(2):138–42.CrossRefGoogle Scholar
Nishida, S. & Johnston, A. (1999) Influence of motion signals on the perceived position of spatial pattern. Nature 397(6720):610–12.CrossRefGoogle ScholarPubMed
Öğmen, H., Patel, S. S., Bedell, H. E. & Camuz, K. (2004) Differential latencies and the dynamics of the position computation process for moving targets, assessed with the flash-lag effect. Vision Research 44:2109–28.CrossRefGoogle ScholarPubMed
Purushothaman, G., Patel, S. S., Bedell, H. E. & Öğmen, H. (1998) Moving ahead through differential visual latency. Nature 396(6710):424.CrossRefGoogle ScholarPubMed
Ramachandran, V. S. & Anstis, S. M. (1990) Illusory displacement of equiluminous kinetic edges. Perception 19(5):611–16.CrossRefGoogle ScholarPubMed
Regan, D. & Beverley, K. I. (1984) Figure-ground segregation by motion contrast and by luminance contrast. Journal of the Optical Society of America A 1:433–42.CrossRefGoogle ScholarPubMed
Saijo, N., Murakami, I., Nishida, S. & Gomi, H. (2005) Large-field visual motion directly induces an involuntary rapid manual following response. Journal of Neuroscience 25(20):4941–51.CrossRefGoogle ScholarPubMed
Snowden, R. J. (1998) Shifts in perceived position following adaptation to visual motion. Current Biology 8(24):1343–45.CrossRefGoogle ScholarPubMed
Watanabe, K., Nijhawan, R. & Shimojo, S. (2002) Shifts in perceived position of flashed stimuli by illusory object motion. Vision Research 42(24):2645–50.CrossRefGoogle ScholarPubMed
Watanabe, K., Sato, T. R. & Shimojo, S. (2003) Perceived shifts of flashed stimuli by visible and invisible object motion. Perception 32(5):545–59.CrossRefGoogle ScholarPubMed
Whitaker, D., McGraw, P. V. & Pearson, S. (1999) Non-veridical size perception of expanding and contracting objects. Vision Research 39(18):29993009.CrossRefGoogle ScholarPubMed
Whitney, D. (2002) The influence of visual motion on perceived position. Trends in Cognitive Sciences 6(5):211–16.CrossRefGoogle ScholarPubMed
Whitney, D. & Cavanagh, P. (2000) Motion distorts visual space: shifting the perceived position of remote stationary objects. Nature Neuroscience 3:954–59.CrossRefGoogle ScholarPubMed
Whitney, D. & Cavanagh, P. (2003) Motion adaptation shifts apparent position without the motion aftereffect. Perception & Psychophysics 65(7):1011–18.CrossRefGoogle ScholarPubMed
Whitney, D., Ellison, A., Rice, N. J., Arnold, D., Goodale, M., Walsh, V. & Milner, D. (2007) Visually guided reaching depends on motion area MT+. Cerebral Cortex 17(11):2644–49.CrossRefGoogle ScholarPubMed
Whitney, D. & Goodale, M. A. (2005) Visual motion due to eye movements helps guide the hand. Experimental Brain Research 162(3):394400.CrossRefGoogle ScholarPubMed
Whitney, D. & Murakami, I. (1998) Latency difference, not spatial extrapolation. Nature Neuroscience 1(8):656–57.CrossRefGoogle Scholar
Whitney, D., Westwood, D. A. & Goodale, M. A. (2003) The influence of visual motion on fast reaching movements to a stationary object. Nature 423(6942):869–73.CrossRefGoogle ScholarPubMed