No CrossRef data available.
Article contents
The next state of the art
Published online by Cambridge University Press: 19 May 2011
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
Ackley, D. H. (1990) Learning from natural selection in an artificial environment. Proceedings of the IJCNN Conference, Washington DC, January. [GFM]Google Scholar
Ackley, D. H. & Littman, M. L. (1990) Learning from natural selection in an artificial environment. Bellcore (videotape). [LDP]Google Scholar
Alford, R. A. & Harris, R. N. (1988) Effects of larval growth history on amphibian metamorphosis. American Naturalist 131:91–106. [JT]Google Scholar
Alley, T. R. (1982) Competition theory, evolution, and the concept of an ecological niche. Acta Biotheoretica 31:165–79. [TRA]Google Scholar
Alley, T. R. (1985) Organism-environment mutuality, epistemics, and the concept of an ecological niche. Synthese 65:411–44. [TRA]Google Scholar
Anderson, A. & Palca, J. (1988) Who knows how the brain works? Nature 335:489–91. [ES]Google Scholar
Arnold, S. J. (1987) Genetic correlation and the evolution of physiology. In: New directions in ecological physiology, ed. Feder, M. E., Bennett, A. F., Burgren, W. W. & Huey, R. B. [JS]Google Scholar
Barto, A. G., Sutton, R. S. & Watkins, C. (in press) Learning and sequential decision making. In: Learning and computational neuroscience, ed. Gabriel, M. & Moore, J. W.. MIT Press. [AGB]Google Scholar
Barto, A. G., Sutton, R. S. & Anderson, C. W. (1983) Neuronlike elements that can solve difficult learning control problems. IEEE Transactions on Systems, Man, and Cybernetics 13:835–46. (Reprinted 1988: Neurocomputing: Foundations of research, ed. Anderson, J. A. & Rosenfeld, E., MIT Press. [AGB]Google Scholar
Bellman, R. (1961) Adaptive control processes. A guided tour. Princeton University Press. [LDP]Google Scholar
Bertsekas, D. P. (1987) Dynamic programming: Deterministic and stochastic' models. Prentice-Hall. [BWD]Google Scholar
Bouskila, A. & Blumstein, D. T. (submitted) Rules of thumb for predation hazard assessment: Predictions from a dynamic model. [JS]Google Scholar
Boyce, M. S. & Perrins, C. M. (1987) Optimizing great tit clutch size in a fluctuating environment. Ecology 68:142–53. [aCWC]Google Scholar
Brown, J. L. (1982) Optimal group size in territorial animals. Journal of Theoretical Biology 95:793–810. [JS]Google Scholar
Busemeyer, J. R. (1982) Choice behavior in a sequential decision-making task. Organizational Behavior and Human Performance 29:175–207. [JTT]Google Scholar
Byrd, J. W., Houston, A. I. & Sozou, P. D. (in press) Optimal fledging times: Analysis of a model by Ydenburg. Ecology. [PDS, RCY]Google Scholar
Campbell, J. H. (1985) An organizational interpretation of evolution. In: Evolution at a crossroads, ed. Depew, D. J. & Weber, B. H.. MIT Press. [FJO-S]Google Scholar
Caraco, T. (1983) White-crowned sparrows (Zonotrychia leucophrys): Foraging preferences in a risky environment. Behavioral Ecology and Sociobiology 12:63–69. [aCWC]Google Scholar
Caraco, T.. & Wolf, L. L. (1975) Ecological determinants of group sizes in foraging lions. American Naturalist 109:343–52. [JS]Google Scholar
Chambers, R. C. & Legget, W. C. (1987) Size and age at metamorphosis in marine fishes: An analysis of laboratory reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Canadian Journal of Fisheries and Aquatic Sciences 44:1936–47. [RCY]Google Scholar
Charlesworth, B. & Charlesworth, D. (1983) The population dynamics of transposable elements. Genetical Research. 42:1–27. [ES]Google Scholar
Charnov, E. L. & Skinner, S. W. (1984) Evolution of host selection and clutch size in parasitoid wasps. Florida Entomologist 67:5–21. [aCWC]Google Scholar
Clark, C. W. (1987) The lazy, adaptable lions: A Markovian model of group foraging. Animal Behavior 35:361–68. [aCWC]Google Scholar
Clark, C. W. & Harvell, D. C. (unpublished) Minimal models of induced defense strategies. [rCWC]Google Scholar
Clark, C. W. & Levy, D. A. (1988) Diel vertical migrations by juvenile sockeye salmon and the antipredation window. American Naturalist 131:271–90. [aCWC]Google Scholar
Clark, C. W. & Mangel, M. (1986) The evolutionary advantages of group foraging. Theoretical Population Biology 30:45–75. [rCWC, SF]Google Scholar
Clark, D. W. & Ydenberg, R. C. (1990) The risks of parenthood. II. Parent-offspring conflict. Evolutionary Ecology 4:312–325. [aCWC, AIH]Google Scholar
Cohen, D. (1966) Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology 18:119–29. [aCWC]Google Scholar
Cooper, W. S. & Kaplan, R. H. (1982) Adaptive “coin-flipping”: A decision- heoretic examination of natural selection for random individual variation. Journal of Theoretical Biology 94:135–51. [arCWC]Google Scholar
Cosmides, L. & Tooby, J. (1987) From evolution to behavior: Evolutionary psychology as the missing link. In: The latest on the best: Essays on evolution and optimality, ed. Dupre, J.. MIT Press. [GFM]Google Scholar
Craig, R. B., De Angelis, D. R. & Dixon, K. R. (1979) Long and short-term dynamic optimization models with application to the feeding strategy of the loggerhead strike. American Naturalist 113:31–51. [RCY]Google Scholar
Cuthill, I. & Guilford, T. (in press) Perceived risk and obstacle avoidance in flying birds. Animal Behaviour. [RHM]Google Scholar
Davies, N. B. (1989) Sexual conflict and the polygamy threshold. Animal Behaviour 38:226–34. [JS]Google Scholar
Dawkins, M. (1989) The future of ethology. How many legs are we standing on? In: Perspectives in ethology, vol. 8, ed. Bateson, P. P. G. & Klopfer, P. H.. Plenum. [PC]Google Scholar
Dehaene, S.Changeux, J.-P. & Nadal, J. -P. (1987) Neuronal networks that learn temporal sequences by selection. Proceedings of the National Academy of Sciences, USA 84:2727–31. [ES]Google Scholar
Den Boer, P. J. (1980) Exclusion or coexistence and the taxonomic or ecological relationship between species. Netherlands Journal of Zoology 30:278–306. [TRA]Google Scholar
Deneubourg, J. L. & Goss, S. (1989) Collective patterns and decision making. Ethology, Ecology and Evolution 1:295–311. [SF]Google Scholar
Devaney, R. L. (1989) An introduction of chaotic dynamical systems, 2nd ed. Addison Wesley. [LDP]Google Scholar
Driver, P. M. & Humphries, D. A. (1988) Protean behavior: The biology of unpredictability. Clarendon Press. [GFM]Google Scholar
Durrell, S. E. A. le V. dit & Goss-Custard, J. D. (1984) Prey selection within a size-class of mussels Mytilus edulis by oystercatchers Haematopus ostralegus. Animal Behaviour 30:917–28. [RHM]Google Scholar
Edelman, G. M. (1987) Neural Darwinism. The theory of neuronal group selection. Basic Books. [ES]Google Scholar
Elman, J. L. (1988) Finding structure in time. Center for Research in Language (CRL) Technical Report 8801, University of California, San Dieg, CA. [GFM]Google Scholar
Fagerstrom, T. (1987) On theory, data and mathematics in ecology. Oikos 50:258–61. [aCWC]Google Scholar
Fantino, E. (1969) Choice and rate of reinforcement. Journal of the Experimental Analysis of Behavior 12:723–30.[EF]Google Scholar
Fantino, E. (1987) Operant conditioning simulations of for aging and the delay-reduction hypothesis. In: Foraging behavior, ed. Kamil, A. C.Krebs, J. R. & Pulliam, H. R.. Plenum Press. [EF]Google Scholar
Fantino, E. & Abarca, M. (1985) Choice, optimal foraging, and the delay-reduction hypothesis. Behavioral and Brain Sciences 8:315–30. [aCWC, EF, PC]Google Scholar
Fantino, E. & Preston, R. A. (1988) Foraging for integration. Behavioral and Brain Sciences 11:683–84. [EF]Google Scholar
Fantino, E. & Preston, R. A. (1989) The delay-reduction hypothesis: Some new tests. In: Psychobiology: Issues and applications, ed. Bond, N. W. & Siddle, D. A. T.. Elsevier (North-Holland). [EF]Google Scholar
Feynman, R. P.Leighton, R. B. & Sands, M. (1964) The Feynman lectures on physics, vol. II. Addison-Wesley. [ES]Google Scholar
Fisher, R. A. (1930) The genetical theory of natural selection. Oxford University Press. [aCWC]Google Scholar
Gilliam, J. F. & Fraser, D. F. (1987) Habitat selection under predation hazard: Test of a model with foraging minnows. Ecology 68:1856–62. [ JT]Google Scholar
Godfray, H. C. J. (1987) The evolution of clutch size in invertebrates. In: Oxford surveys in evolutionary ecology, vol. 4., ed. Harvey, P. H. & Partridge, L.. Oxford University Press. [rCWC]Google Scholar
Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley. [GFM]Google Scholar
Goodwin, B. C. & Trainor, L. E. (1980) A field description of the cleavage process in embryogenesis. Journal of Theoretical Biology 85:757–82. [ES]Google Scholar
Gould, S. J. & Lewontin, R. C. (1979) The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptational programme. Proceedings of the Royal Society of London B 205:581–98. [aCWC, CLH]Google Scholar
Grafen, A. (1984) Natural selection, kin selection, and group selection. In: Behavioral ecology: An evolutionary approach, 2nd ed., ed. Krebs, J. R. & Davies, N. B.. Blackwell. [aCWC]Google Scholar
Green, D. M. & Swets, J. A. (1966) Signal detection theory and psychophysics. Krieger. [JTT]Google Scholar
Hamilton, W. D. (1964) The evolution of social behavior. I and II. Journal of Theoretical Biology 7:1–52. [GFM]Google Scholar
Harley, C. B. (1981) Learning the evolutionarily stable strategy. Journal of Theoretical Biology 89:611–33. [ES]Google Scholar
Hartl, D. L. & Clark, A. G. (1989) Principles of population genetics, 2nd ed. Sinauer. [FJO-S]Google Scholar
Heinrich, B. (1983) Do bumblebees forage optimally, and does it matter? American Zoologist 23:273–81. [PC]Google Scholar
Heyman, D. P. & Sobel, M. J. (1984) Stochastic models in operations research, vol. 2. McGraw-Hill. [aCWC]Google Scholar
Heyman, G. M. (1988) Optimization theory: A too narrow path. Behavioral and Brain Sciences 11:136–37. [MLH]Google Scholar
Heyman, G. M. & Hermstein, R. J. (1986) More on concurrent interval-ratio schedules: A replication and review. Journal of the Experimental Analysis of Behavior 46:331–51. [EF]Google Scholar
Hofbauer, J. & Sigmund, K. (1988) The theory of evolution and dynamical systems. Cambridge University Press. [ES]Google Scholar
Holland, J. (1975) Adaptation in natural and artificial systems. University of Michigan Press. [GFM]Google Scholar
Horn, H. S. & Rubenstein, D. I. (1984) Behavioral adaptations and life history. In: Behavioral ecology, 2nd ed., ed. Krebs, J. R. & Davies, N.. Blackwell. [aCWC]Google Scholar
Houston, A. I. (1990) Foraging in the context of life-history: General principles and specific models. In: Behavioural mechanisms of food selection, ed. Hughes, R. N.. NATO ASI Series, vol. G20. Springer Verlag. [AIH]Google Scholar
Houston, A. I. & McNamara, J. M. (1986) Evaluating the selection pressure on foraging decisions. In: Relevance of models and theories in ethology, ed. Camper, R. & Zayan, R.. Privat. [aCWC]Google Scholar
Houston, A. I. & McNamara, J. M. (1987) Singing to attract a mate - a stochastic dynamic game. Journal of Theoretical Biology 129:57–68. [aCWC, RCY]Google Scholar
Houston, A. I. & McNamara, J. M. (1988a) A framework for the functional analysis of behavior. Behavioral and Brain Sciences 11:117–63. [aCWC, EF, AIH, MLH, GFM, FJO-S, LDP]Google Scholar
Houston, A. I. & McNamara, J. M. (1988b) Fighting for food: A dynamic version of the hawk-dove game. Evolutionary Ecology 2:51–64. [PS-H]Google Scholar
Houston, A. I.Clark, C. W.McNamara, J. M. & Mangel, M. (1988) Dynamic models in behavioural and evolutionary ecology. Nature 332:29–34. [aCWC]Google Scholar
Howe, M. L. & Rabinowitz, F. M. (1990) Development: Sequence, structure and chaos. Annals of Theoretical Psychology 7 (in press). [MLH]Google Scholar
Hughes, R. N. (1979) Optimal diets under the energy maximisation premise: The effects of recognition time and learning. American Naturalist 113:209–21. [RHM]Google Scholar
Intriligator, M. D. (1971) Mathematical optimization and economic theory. Prentice Hall. [PS-H]Google Scholar
Iwasa, Y. & Teramoto, E. (1980) A criterion of life history evolution based on density-dependent selection. Journal of Theoretical Biology 13:1–68. [JT]Google Scholar
Jamieson, I. G. (1989a) Behavioral heterochrony and the evolution of birds' helping at the nest: An unselected consequence of communal breeding? American Naturalist 133:394–406. [PC]Google Scholar
Jamieson, I. G. (1989b) Levels of analysis or analyses at the same level. Animal Behaviour 37:696–97. [PC]Google Scholar
Janetos, A. C. & Cole, B. J. (1981) Imperfectly optimal animals. Behavioural Ecology Sociobiology 9:203–9. [JS]Google Scholar
Jordan, M. I. (1986) Serial order: A parallel distributed processing approach. Institute for Cognitive Science Technical Report 8604, University of California, San Diego, CA. [GFM]Google Scholar
Katz, P. L. (1974) A long-term approach to foraging optimization. American Naturalist 108:758–82. [RCY]Google Scholar
Kirpatrick, M. & Lande, R. (1989) The evolution of maternal characters. Evolution 43:485–503. [JS]Google Scholar
Klomp, H. (1970) The determination of clutch size in birds: A review. Ardea 58:1–124. [aCWC]Google Scholar
Klopf, A. H. & Morgan, J. S. (in press) The role of time in natural intelligence: Implications of classical and instrumental conditioning for neuronal and neural network modeling. In: Learning and computational neuroscience, ed. Gabriel, M. & Moore, J. W.. MIT Press. [AGB]Google Scholar
Klopf, A. H. (1988) A neuronal model of classical conditioning. Psychobiology 16:85–125. [AGB]Google Scholar
Krebs, J. R. & McCleery, R. H. (1984) Optimization in behavioral ecology. In: Behavioral Ecology, 2nd ed., ed. Krebs, J. R. & Davies, N. B.. Blackwell. [PS-H]Google Scholar
Lande, R. & Arnold, S. J. (1983) The measurement of selection on correlated characters. Evolution 37:1210–26. [PC]Google Scholar
Levins, R. (1968) Evolution in changing environments. Princeton University Press. [aCWC]Google Scholar
Lucas, J. R. & Walter, L. R. (1988) Determinants of short-term caching behavior in Carolina chickadees. Unpublished. [aCWC]Google Scholar
Lucas, J. R. & Walter, L. R. (in press) Short-term caching strategies: Effects of state variables. Animal Behaviour. [CLH]Google Scholar
Lucas, J. R.Schmid-Hempel, P. (1988) Diet choice in patches: Time-constraint and state-space solutions. Journal of Theoretical Biology 131:307–332. [PS-H]Google Scholar
Ludwig, D. & Rowe, L. (1990) Life-history strategies for energy gain and predator avoidance under time constraints. American Naturalist 135:686–707. [rCWC, RCY]Google Scholar
Ludwig, D. A. (1989) Small models are beautiful; efficient estimators are even more beautiful. In: Mathematical approaches to problems in resource management and epidemiology, ed. Castillo-Chavez, C.Levin, S. A. & Shoemaker, C. A.. Springer Verlag. [aCWC]Google Scholar
Mace, R. H. & Houston, A. I. (1989) Pastoral strategies for survival in unpredictable environments: A model of herd composition that maximizes household viability. Agricultural Systems 31:185–204. [RHM]Google Scholar
Mangel, M. (1987) Oviposition site selection and clutch size in insects. Journal of Mathematical Biology 25:1–22. [aCWC, CLH]Google Scholar
Mangel, M. (in press) Adaptive walks on behavioral landscapes and the evolution of optimal behavior by natural selection. Evolutionary Ecology. [JS]Google Scholar
Mangel, M. (1990) Dynamic information in uncertain and changing worlds. Journal of Theoretical Biology 146:317–22. [aCWC]Google Scholar
Mangel, M. and Clark, C. W. (1986) Towards an unified foraging theory. Ecology 67:1127–38. [SF, ES]Google Scholar
Mangel, M. and Clark, C. W. (1988)Dynamic modeling in behavioral ecology. Princeton University Press. [aCWC, JR, JS]Google Scholar
Martindale, S. (1982) Nest defence and central place foraging: A model experiment. Behavioral Ecology and Sociobiology 10:85–89. [RCY]Google Scholar
Maynard Smith, J. (1978) Optimization theory in evolution. Annual Review of Ecology and Systematics 9:31–56. [aCWC]Google Scholar
Maynard Smith, J. (1982) Evolution and theory of games. Cambridge University Press. [aCWC, ES]Google Scholar
Maynard-Smith, J.Burian, R.Kauffman, S.Albrech, P.Campbell, J.Goodwin, B.Lande, R.Raup, D. & Wolpert, L. (1985) Developmental constraints and evolution. Quarterly Review of Biology 60:265–87. [JS]Google Scholar
McFarland, D. J. & Houston, A. I. (1981) Quantitative ethology: The state space approach. Pitman. [aCWC]Google Scholar
McFarland, D. J., & Sibley, R. M. (1972) “Unitary drives” revisited. Animal Behaviour 20:548–63. [PS-H]Google Scholar
McNamara, J. M. (1990) The starvation-predation trade-off and some behavioural and ecological consequences. In: Behavioural mechanisms of food selection, ed. Hughes, R. N.. NATA ASI Series, vol. G20. Springer Verlag. [AIH]Google Scholar
McNamara, J. M. (1990) The policy which maximizes long-term survival of an animal faced with the risks of starvation and predation. Advances in Applied Probability 22:295–308. [arCWC]Google Scholar
McNamara, J. M. & Houston, A. I. (1982) Short-term behavior and lifetime fitness. In: Functional ontogeny, ed. McFarland, D. J.. Pitmans. [aCWC]Google Scholar
McNamara, J. M. & Houston, A. I. (1987) Starvation and predation as factors limiting population size. Ecology 68:1515–19. [rCWC[Google Scholar
McNamara, J. M. & Houston, A. I. (1990a) Starvation and predation in a patchy environment. In: Living in a patchy environment, ed. Swingland, I. & Shorrocks, B.. Oxford University Press. [AIH]Google Scholar
McNamara, J. M. & Houston, A. I. (1990b) The state-dependent ideal-free distribution. Evolutionary Ecology 4:298–311. [AIH]Google Scholar
McNamara, J. M., Houston, A. I. & Krebs, J. R. (1990) Why hoard? The economics of food-storing in tits. Behavioural Ecology 1:12–23. [CLH]Google Scholar
McNamara, J. M.Mace, R. H. & Houston, A. I. (1987) Optimal daily routines of singing and foraging in a bird singing to attract a mate. Behavioral Ecology and Sociobiology 20:399–405. [aCWC]Google Scholar
Miller, G. F. & Todd, P. M. (1990) Exploring adaptive agency with genetic algorithms and neural networks. In: Proceedings of the 1990 Connectionist Models. Summer, San Mateo, CA, ed. Touretsky, D. S.Elman, J. L.Sejnowski, T. J. & Hinton, G. E.. Morgan Kauffman. [GFM]Google Scholar
Miller, G. F.Todd, P. M. & Hegde, S. (1989) Designing neural networks using genetic algorithms. In: Proceedings of the third international conference on genetics algorithms, San Mateo, CA, ed. Schaffer, J. D.. Morgan Kauffman. [GFM]Google Scholar
Mitchell, W. A. & Valone, T. J. (1990) The optimization research program: Studying adaptations by their function. Quarterly Review of Biology 65:43–52. [rCWC]Google Scholar
Molnar, I. & Verhas, J. (1990) Mechanical aspects of development. In: Organizational constraints on the dynamics of evolution, ed. Maynard Smith, J. & Vida, G.. Manchester University Press. [ES]Google Scholar
Nisbett, R. & Ross, L. (1980) Human inference: Strategies and shortcomings of social judgment. Prentice Hall. [EF]Google Scholar
Odling-Smee, F. J. (1988) Niche constructing phenotypes. In: The role of behavior in evolution, ed. Plotkin, H. C.. MIT Press. [FJO-S]Google Scholar
Ollason, J. (1980a) Learning to forage-optimally? Theoretical Population Biology 18:44–56. [PC]Google Scholar
Ollason, J. (1980b) Behavioural consequences of hunting by expectation: a simulation study of foraging tactics. Theoretical Population Biology 23:323–46. [SF]Google Scholar
Oster, G. F. & Wilson, E. O. (1978) Caste and ecology in the social insects. Princeton University Press. [aCWC]Google Scholar
Packer, C.Scheel, D. & Pusey, A. E. (1990) Why lions form groups: Food is not enough. American Naturalist 136:1–19. [JS]Google Scholar
Partridge, L. D. (1976) A proposal for study of a state description of the motor system. In: Motor control, ed. Shahani, M.. Elsevier. [LDP]Google Scholar
Partridge, L. D. (1982) The “good enough” calculus of evolving control system evolution is not engineering. American Journal of Physiology 242:R173–77. [LDP]Google Scholar
Philippi, T. & Seger, J. (1989) Hedging one's evolutionary bets, revisited. Trends in Evolutionary Ecology 4:41–44. [rCWC]Google Scholar
Pianka, E. (1976) Competition and niche theory. In: Theoretical ecology, ed. May, R. M. & Saunders, W. B.. [TRA]Google Scholar
Pierce, G. J. & Ollason, J. G. (1987) Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49:111–118. [aCWC, PS-H]Google Scholar
Poethke, H. J. & Kaiser, H. (1985) A simulation approach to evolutionary game theory: The evolution of timesharing behaviour in a dragonfly mating system. Behavioral Ecology and Sociobiology 18:155–63. [AIH]Google Scholar
Pontrjagin, L. S., Boltyanskii, V. S., Gamkrelidze, R. V. & Mishchenco, E. F. (1962) The mathematical theory of optimal processes. Wiley-Interscience. [aCWC]Google Scholar
Price, K. (1989) Territorial defence and bequeathal by red squirrel mothers in the northern boreal forest. M.S. thesis, Simon Fraser University. [RCY]Google Scholar
Pyke, G. H. (1978) Optimal foraging: Movement patterns of bumblebees between inflorescences. Theoretical Population Biology 13:72–97. [PC]Google Scholar
Rachlin, H.Battalio, R. Ca.Kagel, J. H. & Green, L. (1981) Maximization theory in behavioral psychology. Behavioral and Brain Sciences 4:371–90. [aCWC]Google Scholar
Real, L. (in press) Sequential search theory and mate choice. I. Models of single-sex discrimination. American Naturalist. [JS]Google Scholar
Real, L. & Caraco, T. (1986) Risk and foraging in stochastic environments. Annual Review of Ecology and Systematics 17:371–90. [aCWC]Google Scholar
Rechten, C.Avery, M. I. & Stevens, T. A. (1983) Optimal prey selection: Why do great tits show partial preferences? Animal Behavior 31:576–84. [PS-H]Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In: Classical conditioning II, ed. Black, A. H. & Prokasy, W. F.. Appleton-Century-Crofts. [AGB]Google Scholar
Roitberg, B. D. (1990) Optimistic and pessimistic fruit flies: Evaluating fitness consequences of estimation errors. Behaviour 114:65–82. [JS]Google Scholar
Rothstein, S. I. (1982) Success and failures in avian egg and nestling recognition with comments on the utility of optimality reasoning. American Zoologist 22:547–60. [PC]Google Scholar
Rothstein, S. I. (1986) A test of optimality: egg recognition in the eastern phoebe. Animal Behaviour 34:1109–19. [PC]Google Scholar
Rumelhart, D. E. & McClelland, J. L. (1986) Parallel distributed processing: Explorations in the microstructure of cognition MIT Press/Bradford Books. [GFM]Google Scholar
Schaffer, J. D. (1989) Proceedings of the third international conference on genetic algorithms, San Mateo, CA. Morgan Kauffman. [GFM]Google Scholar
Schaffer, W. M. (1974) Optimal reproductive effort in fluctuating environments. American Naturalist 108:783–90. [ES]Google Scholar
Schaffer, W. M. (1983) The application of optimal control theory to the general life history problem. American Naturalist 121:418–431. [PS-H]Google Scholar
Schmid-Hempel, P.Kacelnik, A. & Houston, A. I. (1985) Honeybees maximize efficiency by not filling their crop. Behavioural Ecology and Sociobiology 17:61–66. [PS-H]Google Scholar
Shepard, R. N. (1987) Toward a universal law of generalization for psychological science. Science 237:1317–23. [GFM]Google Scholar
Simon, H. A. (1962) An information processing theory of intellectual development. In: Thought in the young child, ed. Kessen, W. & Kuhlman, C.. Monographs for the Society for Research in Child Development 27:150–62. [MLH]Google Scholar
Slobodkin, L. B. (1975) Comments from a biologist to a mathematician. In: Ecosystem analysis and prediction, ed. Levin, S. A.. Society for Industrial and Applied Mathematics. [TRA]Google Scholar
Slobodkin, L. B. & Rapoport, A. (1974) An optimal strategy of evolution. Quarterly Review of Biology 49:181–200. [TRA]Google Scholar
Smith, E. A. (1988) Realism, generality, or testability: The ecological modeler's dilemma. Behavioral and Brain Sciences 11:149–50. [AIH]Google Scholar
Stamps, J. A. (in press) The effect of conspecifics on habitat selection in territorial species. Behavioral Ecology and Sociobiology. [JS]Google Scholar
Stearns, S. C. (1976) Life-history tactics: A review of the ideas. Quarterly Review of Biology 51:3–47. [aCWC]Google Scholar
Stearns, S. C. (in press) Comparative and experimental approaches to the evolutionary ecology of development. In: Evolution et developement, ed. Chaline, R. & David, B.. [PC]Google Scholar
Stearns, S. C. & Crandall, R. E. (1984) Plasticity of age and size at sexual maturity: A life history response to unavoidable stress. In: Fish reproduction, ed. Potts, G. & Wootton, R.. Academic Press. [PS-H]Google Scholar
Stearns, S. C. & Koella, J. C. (1986) The evolution of phenotypic plasticity in life-history traits: Predictions of reaction norms for age and size at maturity. Evolution 40:893–914. [JT]Google Scholar
Stearns, S. C. & Schmid-Hempel, P. (1987) Evolutionary insights should not be wasted. Oikos 49:118–25. [PS-H, SF]Google Scholar
Stephens, D. W. & Krebs, J. R. (1986) Foraging theory. Princeton University Press. [aCWC, SF]Google Scholar
Stephens, D. W. (1987) On economically tracking a variable environment. Theoretical Population Biology 32:15–25. [aCWC, MLH]Google Scholar
Sumida, B. H., Houston, A. I., McNamara, J. M. & Hamilton, W. D. (1990) Genetic algorithms and evolution. Journal of Theoretical Biology 147:59–84. [AIH]Google Scholar
Sutherland, W. J. and Parker, G. A. (1985) Distribution of unequal competitors. In: Behavioural ecology, ed. Sibly, R. M. & Smith, R. H.. Blackwell. [RHM]Google Scholar
Sutton, R. S. (1984) Temporal credit assignment in reinforcement learning. Ph.D. thesis, University of Massachusetts, Amherst, MA. [AGB]Google Scholar
Sutton, R. S. (1988) Learning to predict by the methods of temporal differences. Machine Learning 3:9–44. [AGB]Google Scholar
Sutton, R. S. & Barto, A. G. (1987) A temporal-difference model of classical conditioning. In: Proceedings of the ninth annual conference of the Cognitive Science Society. Erlbaum. [AGB]Google Scholar
Sutton, R. S. & Barto, A. G. (in press) Time-derivative models of Pavlovian conditioning. In: Learning and Computational Neuroscience, ed. Gabriel, M. & Moore, J. W.. MIT Press. [AGB]Google Scholar
Szathmàry, E. (1989) The emergence, maintenance, and transitions of the earliest evolutionary units. In: Oxford surveys in evolutionary biology, ed. Harvey, P. H. & Partridge, L.. Oxford University Press. [ES]Google Scholar
Szekely, T., Sozou, P. D. & Houston, A. I. (in press) Flocking behaviour of passerines: A dynamic model for the nonreproductive season. Behavioral Ecology and Sociobiology. [PDS]Google Scholar
Taylor, F. (in press) Testing hypotheses about the evolution of the mean phenotype in temporally variable environments. In: Genetics, evolution, and coordination of insect life cycles, ed. Gilbert, F.. Springer- Verlag. [JT]Google Scholar
Taylor, P. & Jonker, L. (1978) Evolutionarily stable strategies and game dynamics. Mathematical Biosciences 40:145–56. [ES]Google Scholar
Thompson, D. B. A. (1983) Prey assessment by plovers (charadridae): Net rate of energy intake and vulnerability to kleptoparasites. Animal Behaviour 31:1226–36. [RHM]Google Scholar
Todd, P. M. & Miller, G. F. (in press) The evolution of adaptive agency: Natural selection and associative learning. In: Simulation of adaptive behavior, ed. Meyer, J. A. & Wilson., S.MIT Press/Bradford Books. [GFM]Google Scholar
Townsend, J. T. (in press) Chaos theory: A brief tutorial and discussion. Festschrift for W. K. Estes, ed. Healy, A., Kosslyn, S., & Shiffrin, R.. Erlbaum Associates. [JTT]Google Scholar
Townsend, J. T. & Busemeyer, J. R. (1989) Approach-avoidance: Return to dynamic decision behavior. In: Current issues in cognitive processes: Tulane Flowerree symposium on cognition, ed. Izawa, C.. Erlbaum Associates. [JTT]Google Scholar
Travis, J. (1982) A method for the statistical analysis of time-energy budgets. Ecology 63:19–25. [JT]Google Scholar
Travis, J. (1989) The role of optimizing selection in natural populations. Annual Review of Ecology and Systematics 20:279–96. [JT]Google Scholar
Travis, J., Farr, J. A., Henrich, S. & Cheong, R. T. (1987) Testing theories of clutch overlap with the reproductive ecology of Heterandria formosa. Ecology 68:611–23. [JT]Google Scholar
Trexler, J. C., Travis, J. & Trexler, M. (1990) Phenotypic plasticity in the sailfin molly, Poecilia latipinna (Pisces: Poeciliidae) II. Laboratory experiment. Evolution 44:157–67. [JT]Google Scholar
Tsitsiklis, J. N. (1989) On the control of discrete-event dynamical systems. Mathematics of Control, Signals, and Systems, 2:95–107. [BWD]Google Scholar
Vandermeer, J. H. (1975) Interspecific competition: A new approach to the classical theory. Science 188:253–55. [TRA]Google Scholar
Vincent, T. L. & Brown, J. S. (1984) Stability in an evolutionary game. Theoretical Population Biology 26:408–27. [ES]Google Scholar
Watkins, C. J. C. H. (1989) Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, England. [AGB]Google Scholar
Werbos, P. J. (1977) Advanced forecasting methods for global crisis warning and models of intelligence. General Systems Yearbook 22:25–38. [AGB]Google Scholar
Werbos, P. J. (1987) Building and understanding adaptive systems: A statistical/numerical approach to factory automation and brain research. IEEE Transactions on Systems, Man, and Cybernetics 17:7–20. [AGB]Google Scholar
Werner, E. E. & Gilliam, J. F. (1984) The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics 15:393–426. [JT]Google Scholar
Widrow, B. & Hoff, M. E. (1960) Adaptive switching circuits. In: 1960 WESCON Convention Record, part IV. Reprinted 1988: Neurocomputing: Foundations of research, ed. Anderson, J. A. & Rosenfeld., E.MIT Press. [AGB]Google Scholar
Wiens, J. A. (1977). On competition and variable environments. American Scientist 65:590–97. [TRA]Google Scholar
Wilson, A. C. (1985) The molecular basis of evolution. Scientific American 253:148–57. [FJO-S]Google Scholar
Wyles, J. S., Kunkel, J. G. & Wilson, A. C. (1983) Birds, behavior, and anatomical evolution. Proceedings of the National Academy of Sciences 80:4394–97. [FJO-S]Google Scholar
Ydenberg, R. C. (1982) Territorial vigilance and foraging behavior: A study of trade-offs. Ph.D. thesis, Oxford University. [RCY]Google Scholar
Ydenberg, R. C. (1987) Nomadic predators and geographical synchrony in microtine population cycles. Oikos 50:270–72. [rCWC]Google Scholar
Ydenberg, R. C. (1989) Growth-mortality trade-offs and the evolution of juvenile life histories in the avian family, Alcidae. Ecology 70:1496–1508. [arCWC, RCY, PS-H, PDS]Google Scholar
Ydenberg, R. C. & Clark, C. W. (1989) Aerobiosis and anaerobiosis during diving by Western grebes: An optimal foraging approach. Journal of Theoretical Biology 139:437–49. [aCWC]Google Scholar
Ydenberg, R. C. & Houston, A. I. (1986) Optimal trade-offs between foraging and territorial defense in the great tit (Parus major). Animal Behavior 34:1041–50. [RCY]Google Scholar
Yoshimura, J. & Clark, C. W. (in press) Individual adaptations in stochastic environments. Evolutionary Ecology. [arCWC]Google Scholar