No CrossRef data available.
Article contents
The neuroendocrine lipostat is not confined to the ventromedial hypothalamus
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1981
References
Abe, K., Kroning, J., Greer, M. A., & Critchlow, V. (1979) Effects of destruction of the suprachiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29(2): 119–131. [JLM]CrossRefGoogle ScholarPubMed
Abumrad, N. A., Stearns, S. B., Tepperman, H. M., & Tepperman, J. (1978) Studies on serum lipids, insulin, and glucogen and on muscle triglyceride in rats adapted to high fat and high carbohydrate diets. Journal of Lipid Research 19:423–432. [RJW]CrossRefGoogle Scholar
Antin, J., Gibbs, J., & Smith, G. P. (1977) Intestinal satiety requires pre-gastric food stimulation. Physiology and Behavior 18(3):421–426. [JLM]CrossRefGoogle Scholar
Aparicio, N. J., Puchulu, F. E., Gagliardino, J. J., Ruiz, M., Llorens, J. M., Ruiz, J., Lamas, A., & de Miguel, R. (1974) Circadian variation of the blood glucose, plasma insulin and human growth hormone levels in response to an oral glucose load in normal subjects. Diabetes 23:132–137. [JLM]CrossRefGoogle Scholar
Ardisson, J. L., Dolisi, C., Stora, H., Ozon, C., Grimaud, D., Camous, J. P., & Gastaud, M. (1974) Alimentary behaviour of a dog. Archives des Sciences Physiologiques 28(1):67–80. [JLM]Google Scholar
Arees, A. E., Veltman, B. I., & Mayer, J. (1969) Hypothalamic blood flow following goldthioglucose-induced lesions. Experimental Neurology 25:410–415. [MIF]CrossRefGoogle ScholarPubMed
Armstrong, S. (1980) A chronometric approach to the study of feeding behavior. Neuroscience & Siobehaoioral Reviews 4:27–53. [SA]CrossRefGoogle Scholar
Armstrong, S., Clarke, J., & Coleman, G. (1978) Light-dark variation in laboratory rat stomach and small intestine content. Physiology and Behavior 21(5):785–788. [SA, DAB, JLM]CrossRefGoogle ScholarPubMed
Aschoff, J. (1960) Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symposia of Quantitative Biology 25:11–28. [SA]CrossRefGoogle ScholarPubMed
Auffray, P., & Marcilloux, J. C. (in press) Analyse de la séquence alimentaire du porc du sevrage à l'état adulte et sa régulation nerveuse. Reproduction, Nutrition et Développement. [JLM]Google Scholar
Balagura, S. (1968) Conditioned glycemic responses in the control of food intake. Journal of Comparative and Physiological Psychology 65:30–32. [JLM]CrossRefGoogle ScholarPubMed
Balagura, S., & Harrell, L. E. (1975) Neuroendocrine conditioning: conditioned feeding after alterations in glucose utilization. American Journal of Physiology 228(2):392–396. [JLM]CrossRefGoogle ScholarPubMed
Balagura, S., & Kanner, M. (1971) Hypothalamic sensitivity to 2-deoxy-D-glucose and glucose: effects on feeding behavior. Physiology and Behavior 7:251–256. [JLM, RCR]CrossRefGoogle ScholarPubMed
Bare, J. (1959) Hunger, deprivation and day night cycle. Journal of Comparative and Physiological Psychology 52:129–131. [LLB]CrossRefGoogle ScholarPubMed
Bare, J., & Cicala, G. (1960) Deprivation and time of testing as determinants of food intake. Journal of Comparative and Physiological Psychology 53:151–154. [LLB]CrossRefGoogle ScholarPubMed
Barreto, H., & Recant, L. (1960) Failure of hypophysectomy, adrenalectomy or thyroidectomy to affect response of non-esterified fatty acids to fasting. Proceedings of the Society for Experimental Biology and Medicine 104:627–629. [LLB]CrossRefGoogle ScholarPubMed
Barone, F. C., Wayner, J., Aguilar-Baturoni, H. U., & Guevara-Aguilar, R. (1979) Effects of cervical vagus nerve stimulation on hypothalamic neuronal activity. Brain Research 4(3):381–392. [JLM]CrossRefGoogle ScholarPubMed
Batchelor, B. P., Stern, J. S., Johnson, P. R., & Mahler, R. J. (1975) Effects of streptozotocin on glucose metabolism, insulin response and adiposity in ob/ob mice. Metabolism 24:77–91. [JLM]CrossRefGoogle ScholarPubMed
Beck-Nielsen, H., & Pedersen, O. (1978) Diurnal variation in insulin binding of human monocytes. Journal of Clinical Endocrinology and Metabolism 47:385–390. [JLM]CrossRefGoogle ScholarPubMed
Becker, E. E. (1975) Multiple controls of hyperphogia. Unpublished doctoral dissertation. City University of New York. [AS]Google Scholar
Becker, E. E., & Kissileff, H. R. (1974) Inhibitory controls of feeding by ventromedial hypothalamus. American Journal of Physiology 226(2):338–396. [JLM]CrossRefGoogle ScholarPubMed
Bellinger, L. L., & Mendel, V. E. (1975) Effect of deprivation and time of re-feeding on food intake. Physiology and Behavior 14:43–46. [LLB]CrossRefGoogle Scholar
Bellinger, L. L., & Mendel, V. E. (1978a) The effects of hypophysectomy (Hypox) on food intake (FI) patterns of rats. Canadian Federation of Biological Societies 21:136. [JLM]Google Scholar
Bellinger, L. L., & Mendel, V. E. (1978b) Hypophysectomy alters the diurnal food intake patterns in rats. Proceedings of the Society for Experimental Biology and Medicine 159:80–83. [LLB]CrossRefGoogle ScholarPubMed
Bellinger, L. L., Mendel, V. E., & Moberg, G. (1975). Circadian insulin, GH, prolactin, corticosterone and glucose rhythms in fed and fasted rats. Hormone and Metabolic Research 7:132–135. [LLB]CrossRefGoogle Scholar
Bellinger, L. L., Williams, F. E., & Bernardis, L. L. (1979) Effect of hypophysectomy, thyroidectomy, castration and adrenalectomy on diurnal food and water intake in rats. Proceedings of the Society for Experimental Biology and Medicine 161:162–166. [LLB, JLM]CrossRefGoogle ScholarPubMed
Bellisle, F., & Le Magnen, J. (1980) The analysis of human feeding patterns: the edogram. Appettite 1:141–150. [JLM]CrossRefGoogle Scholar
Bernardis, L. L. (1973) Disruption of diurnal feeding and weight gain cycles in weanling rats by ventromedial and dorsomedial hypothalamic lesions. Physiology and Behavior 10:855–861. [AS]CrossRefGoogle ScholarPubMed
Bernstein, I. L., & Vitiello, M. V. (1978) The small intestine and the control of meal patterns of the rat. Physiology and Behavior 20(4):417–422. [BJC, JLM]CrossRefGoogle ScholarPubMed
Berthoud, H. R., & Jeanrenaud, B. (1979) Acute hyperinsulinemia and its reversal by vagotomy after lesions of the ventromedial hypothalamus in anesthetized rats. Endocrinology 105:146–151. [BMK]CrossRefGoogle ScholarPubMed
Blass, E. M., & Hall, W. G. (1976) Drinking termination: interactions among hydrational, orogastric and behavioural controls in rats. Psychological Review 83:356–374. [FMT]CrossRefGoogle ScholarPubMed
Boice, B. (1972) Some behavioral tests of domestication in the Norway rat. Behavior 42:198–231. [RBK]CrossRefGoogle Scholar
Booth, D. A. (1968) Effect of intrahypothalamic glucose injection on eating and drinking elicited by insulin. Journal of Comparative and Physiological Psychology 65(1):13–16. [MIF, JLM, RCR]CrossRefGoogle ScholarPubMed
Booth, D. A. (1972a) Some characteristics of feeding during streptozotocin-induced diabetes in the rat. Journal of Comparative and Physiological Psychology 80:238–249. [JLM]CrossRefGoogle Scholar
Booth, D. A. (1972b) Conditioned satiety in the rat. Journal of Comparative and Physiological Psychology 81:457–471. [DAB, JLM]CrossRefGoogle ScholarPubMed
Booth, D. A. (1972c) Satiety and behavioral caloric compensation following intragastric glucose loads in the rat. Journal of Comparative and Physiological Psychology 78:412–32. [DAB, JLM]CrossRefGoogle ScholarPubMed
Booth, D. A. (1972d) Postabsorptively induced suppression of appetite and the energostatic control of feeding. Physiology and Behavior 9:199–202. [DHB, BJC, JLM]CrossRefGoogle ScholarPubMed
Booth, D. A. (1976) Approaches to feeding control. In: Appetite and food intake, ed. Silverstone, T., pp. 417–478. Dahlem/Verlag Chemie. [DAB]Google Scholar
Booth, D. A. (1977a) Appetite and satiety as metabolic expectancies. In: Food intake and chemical senses, ed. Katsuki, Y., Sato, M., Takagi, S., & Oomura, Y., pp. 76–81. Tokyo: University of Tokyo Press. [JLM]Google Scholar
Booth, D. A. (1977b) Satiety and appetite are conditioned reactions. Psychosomatic Medicine 39(2):76–81. [JLM]CrossRefGoogle ScholarPubMed
Booth, D. A. (1978) Prediction of feeding behaviour from energy flows in the rat. In: Hunger models: computable theory of feeding control, ed. Booth, D. A., pp. 227–278. London: Academic Press. [DAB, JMdC, JLM]Google Scholar
Booth, D. A. (1979) Metabolism and the control of feeding in man and animals. In: Chemical influences on behaviour, ed. Brown, K. & Cooper, S. J.. London: Academic Press. [DAB]Google Scholar
Booth, D. A., & Brookover, T. (1968) Hunger elicited in the rat by a single injection of bovine crystalline insulin. Physiology and Behavior 3:439–446. [JDD]CrossRefGoogle Scholar
Booth, D. A., Coons, E. E., & Miller, N. E. (1969) Blood glucose responses to electrical stimulation of the hypothalamic feeding area. Physiology and Behavior 4(6):991–1002. [JLM]CrossRefGoogle Scholar
Booth, D. A. & Davis, J. D. (1973) Gastrointestinal factors in the acquisition of oral sensory control of satiation. Physiology and Behavior 11(1):23–30. [JLM]CrossRefGoogle ScholarPubMed
Booth, D. A., & Jarman, S. P. (1975) Ontogeny and insulin-dependence of the satiation which follows carbohydrate absorption in the rat. Behavioral Biology 15:159–172. [JLM]CrossRefGoogle ScholarPubMed
Booth, D. A., Stoloff, R., & Nicholls, J. (1974) Dietary flavor acceptance in infant rats established by association with effects of nutrient composition. Physiological Psychology 2:313–319. [DAB]CrossRefGoogle Scholar
Booth, D. A., and Stribling, D. (1978) Neurochemistry of appetite mechanisms. Proceedings of Nutrition Society 37:181–191. [DAB]CrossRefGoogle ScholarPubMed
Booth, D. A., & Toates, F. M. (1974) A physiological control theory of food intake in the rat. Bulletin of the Psychonomic Society 3:442–444. [DAB, FMT]CrossRefGoogle Scholar
Booth, D. A., Toates, F. M., & Platt, S. V. (1976) Control system for hunger and its implications in animals and man. In: Hunger: basic mechanisms and clinical implications, ed. Novin, D., Wyrwicka, W., & Bray, G. A., pp. 127–143. New York: Raven Press. [DAB]Google Scholar
Borer, K. T., Rowland, N., Mirow, A., Borer, R. C. Jr, & Kelch, R. P. (1979) Physiological and behavioral responses to starvation in the golden hamster. American Journal of Physiology 236:E105–E112. [KTB, BJC, NR]Google ScholarPubMed
Boshes, M. (1978) An analysis of feeding behavior and feeding patterns in two species of hibernating rodents, the golden-mantled ground squirrel, Spermophilus lateralis and the edible dormouse, Glis glis. Ph.D. thesis, University of Toronto. [NM]Google Scholar
Boulos, Z., & Terman, M. (1980) Food availability and daily biological rhythms. Neuroscience and Biobehavioral Reviews 4:119–131. [NM]CrossRefGoogle ScholarPubMed
Boyle, P. C., Storlien, L. H., & Keesey, R. H. (1978) Increased efficiency of food utilization following weight loss. Physiology and Behavior 21:261–264. [BJC]CrossRefGoogle ScholarPubMed
Brandes, J. S. (1977) Insulin induced overeating in the rat. Physiology and Behavior 18:1095–1102. [JDD, RBK]CrossRefGoogle ScholarPubMed
Bray, C. A., & Nishizawa, Y. (1978) Ventromedial hypothalamus modulates fat mobilization during fasting. Nature 274:900–902. [BMK, JLM]CrossRefGoogle ScholarPubMed
Burton, M. J., Mora, F. & Rolls, E. T. (1975) Visual and taste neurons in the lateral hypothalamus and substantia innominata: modulation of responsiveness by hunger. Journal of Physiology 252(2):50. [JLM]Google ScholarPubMed
Burton, M. J., Rolls, E. T., & Mora, F. (1976) Effects of hunger on the responses of neurones in the hypothalamus to the sight and taste of food. Experimental Neurology 53:508–519. [JLM]Google Scholar
Calhoun, J. B. (1963) The ecology and sociology of the Norway rat. PHS Monograph 1008. Washington, DC: U.S. Department of Health, Education and Welfare. [SA, RBK]CrossRefGoogle Scholar
Campbell, S., & Davis, J. D. (1974) Peripheral control of food intake: interaction between test diet and postingestive chemoreception. Physiology and Behavior 12(3):377–384. [JLM]CrossRefGoogle ScholarPubMed
Campfield, L. A., Smith, F. J., & Wolf, R. E. (1980a) Abolition of acetylcholine sensitivity of pancreatic beta cells after vagotomy. Clinical Research 28:47A. [JLM]Google Scholar
Campfield, L. A., Smith, F. J., & Wolf, R. E. (1980b) Enhancement of glucose responsiveness and suppression of acetylcholine sensitivity of pancreatic beta cells after vagotomy. Program of Endocrine Society 62:212. [JLM]Google Scholar
Canguilhem, B. (1977) Rythmes circannuels du poids et du sommeil hibernal chez le hamster d'Europe. Thèse de Doctorat d'Etat, Paris. [JLM]Google Scholar
Cannon, W. B., McIver, M. A., & Bliss, S. W. (1924) Studies of the conditions of activity in endocrine glands: XIII. A sympathetic adrenal mechanism for mobilising sugar in hypoglycemia. American Journal of Physiology 69:46–66. [KTB]CrossRefGoogle Scholar
Carpenter, R. G., Stamoutsos, B. A., Dalton, L. D., Frohman, L. A., & Grossman, S. P. (1979) VMH obesity reduced but not reversed by scopolamine methyl nitrate. Physiology and Behavior 23:955–959. [BMK]CrossRefGoogle Scholar
Carroll, K. F., & Nestel, P. J. (1973) Diurnal variation in glucose tolerance and in insulin secretion in man. Diabetes 22(5):333–348. [JLM]CrossRefGoogle ScholarPubMed
Casper, R. C., Kirschner, B., Sandstead, H. H., Jacob, R. A., & Davis, J. M. (1980) An evaluation of trace metals, vitamins and taste function in anorexia nervosa. American Journal of Clinical Nutrition 33:1801–1808. [RCC]CrossRefGoogle ScholarPubMed
Cohn, C., & Joseph, D. (1962) Influence of body weight and body fat on appetite of “normal” lean and obese rats. Yale Journal of Biology and Medicine 34:518–607. [JLM]Google ScholarPubMed
Cohn, C., Joseph, D., Bell, L. & Allweiss, M. D. (1965) Studies on the effects of feeding and dietary composition on fat deposition. Annals of the New York Academy of Sciences 131:507–518. [RJW]CrossRefGoogle ScholarPubMed
Cohn, C., Shargo, E., & Joseph, D. (1955) Effect of food administration on weight gains and body composition of normal and adrenalectomized rats. American Journal of Physiology 180:503–507. [LLB]CrossRefGoogle ScholarPubMed
Collier, G. H. (1977) Optimal feeding strategies in animals: a laboratory simulation. Sixth international conference on the physiology of food and fluid intake, Paris. [SA]Google Scholar
Collier, G. H. (1980) An ecological analysis of motivation. In: Analysis of motivational processes, ed. Toates, F. M. & Halliday, T. R., pp. 125–151. London: Academic Press. [JWP]Google Scholar
Collier, G., Hirsch, E., & Hamlin, D. H. (1972) The ecological determinants of reinforcement in the rat. Physiology and Behavior 9:705–716. [JMdC]CrossRefGoogle ScholarPubMed
Collier, G., Hirsch, E., & Kanarek, R. (1977) The operant revisited. In: Handbook of operant behavior, ed. Honig, W. K. & Staddon, J. E. R., pp. 28–52. Englewood Cliffs, N.J.: Prentice-Hall. [RBK, NR]Google Scholar
Collins, B. J., & Davis, J. D. (1978) Long term inhibition of intake by mannitol. Physiology and Behavior 21:957–966. [BJC, JLM]CrossRefGoogle ScholarPubMed
Conlee, R. K., Rennie, M. J., & Winder, W. W. (1976) Skeletal muscle glycogen content: diurnal variation and effects of fasting. American Journal of Physiology 231:614–618. [JPF]CrossRefGoogle ScholarPubMed
Conrad, L. C. A., & Pfaff, D. W. (1976) Autoradiographic study of efferents from medial basal forebrain and hypothalamus in the rat: II. Medial anterior hypothalamus. Journal of Comparative Neurology 169:221–262. [JP]CrossRefGoogle ScholarPubMed
Danguir, J., & Nicolaidis, S. (1980a) Circadian sleep and feeding patterns in the rat: possible dependence on lipogenesis and lipolysis. American Journal of Physiology 238:E223–E230. [JLM]Google ScholarPubMed
Danguir, J., & Nicolaidis, S. (1980b) Intravenous infusions of nutrients and sleep in the rat: an ischymetric sleep regulation hypothesis. American Journal of Physiology 238:E307–E312. [JLM]Google ScholarPubMed
Davis, J. D., & Campbell, C. S. (1973) Peripheral control of meal size in the rat: effect of sham feeding in meal size and drinking rate. Journal of Comparative and Physiological Psychology 83(3):379–387. [JLM]CrossRefGoogle ScholarPubMed
Davis, J. D., Collins, B. J., & Levine, M. W. (1975) Peripheral control of drinking/gastrointestinal filling as a negative feedback signal: a theoretical and experimental analysis. Journal of Comparative and Physiological Psychology 89(9):985–1002. [JLM]CrossRefGoogle Scholar
Davis, J. D., & Levine, M. (1977) A model for the control of ingestion. Psychological Review 84:379–412. [JDD]CrossRefGoogle Scholar
Debons, A. F., Krimsky, I., & From, A. (1970) A direct action of insulin on the hypothalamic satiety center. American Journal of Physiology 219(4):938–943. [JLM, JP]CrossRefGoogle ScholarPubMed
Debons, A. F., Krimsky, I., & From, A. (1973) Modification of alloxan-induced diabetes: correlated changes in hypothalamic satiety center. American Journal of Physiology 224(4):862–869. (JLM]CrossRefGoogle ScholarPubMed
Debons, A. F., Krimsky, I., From, A., & Cloutier, R. J. (1970) Site of action of gold thioglucose in hypothalamic satiety center. American Journal of Physiology 219(5):1397–1402. [JLM]CrossRefGoogle ScholarPubMed
Debons, A. F., Krimsky, I., From, A., & Pattinian, H. (1974) Phlorizin inhibition of hypothalamic necrosis induced by gold-thioglucose. American Journal of Physiology 226(3):574–578. [JLM]CrossRefGoogle ScholarPubMed
Debons, A. F., Silver, L., Cronkite, E. P., Johnson, H. A., Brecher, G., Tenzer, D., & Schwartz, I. L. (1964) Localization of gold in mouse brain in relation to gold thioglucose obesity. American Journal of Physiology 202(4):743–750. [JLM]CrossRefGoogle Scholar
de Castro, J. M. (1975) Meal pattern correlations: facts and artifacts. Physiology and Behavior 15:13–17. [JLM]CrossRefGoogle Scholar
de Castro, J. M. (1978) An analysis of the variance in meal patterns. Neuroscience and Biobehavioral Reviews 2:301–309. [JMdC]CrossRefGoogle Scholar
de Castro, J. M. (1980) Core temperature relationships with spontaneous behavior in the rat. Physiology and Behavior 25:69–75. [JMdC]CrossRefGoogle ScholarPubMed
de Castro, J. M. (1981) The stomach energy content governs meal patterning in the rat. Physiology and Behavior in press. [JMdC]CrossRefGoogle ScholarPubMed
de Castro, J. M., & Balagura, S. (1975a) Meal patterning in the streptozotocindiabetic rat. Physiology and Behavior 15:259–263. [MIF, JLM]CrossRefGoogle ScholarPubMed
de Castro, J. M., & Balagura, S. (1975b) The ontogeny of meal patterning in rats and its recapitulations during recovery from lateral hypothalamic lesions. Journal of Comparative and Physiological Psychology 89:791–802. [JMdC]CrossRefGoogle ScholarPubMed
de Castro, J. M., Paullin, S. K., & DeLugas, G. M. (1978) Insulin and glucagon as determinants of body weight set point and microregulation in rats. Journal of Comparative and Physiological Psychology 92:571–579. [JMdC]CrossRefGoogle ScholarPubMed
DeLuise, M., Blackburn, G. L., & Flier, J. S. (1980) Reduced activity of the red-cell sodium-potassium pump in human obesity. New England Journal of Medicine 303:1017–1022. [BJC]Google Scholar
Dethier, V. G. (1976) The hungry fly. Cambridge, Mass.: Harvard University Press. [JDD]Google Scholar
Deutsch, J. A., Young, W. C., & Kalogeris, T. J. (1978) The stomach signals satiety. Science 201(4340):165–166. [JLM]CrossRefGoogle ScholarPubMed
Duncan, I. J. H., Home, A. R., Hughes, B. O., & Wood-Gush, D. G. M. (1970) The pattern of food intake in female brown leghorn fowls as recorded in a Skinner box. Animal Behavior 18(2):245–255. [JLM]CrossRefGoogle Scholar
Epstein, A. N. (1960) Reciprocal changes in feeding behavior produced by intrahypothalamic chemical injections. American Journal of Physiology 199:969–974. [RCR]CrossRefGoogle ScholarPubMed
Epstein, A. N., & Teitelbaum, P. (1967) Specific loss of the hypoglycemic control of feeding in the recovered laterals. American Journal of Physiology 213:1159–1167. [RBK]CrossRefGoogle Scholar
Fitzsimons, J. T., & Le Magnen, J. (1969). Eating as a regulatory control of drinking in the rat. Journal of Comparative and Physiological Psychology 67:273–283. [JMdC]CrossRefGoogle ScholarPubMed
Flemming, D. G. (1969) Food intake studies in parabiotic rats. Annals of New York Academy of Sciences 157 (Art. 2):985–1003. [JLM]CrossRefGoogle Scholar
Friedman, M. (1972) Effects of alloxan diabetes on hypothalamic hyperphagia and obesity. American Journal of Physiology 222:174–178. [BMK, JLM, JP]CrossRefGoogle ScholarPubMed
Friedman, M. (1978) Hyperphagia in rats with experimental diabetes mellitus: a response to a decreased supply of utilizable fuels. Journal of Comparative and Physiological Psychology 92:109–117. [MIF, JLM, RJW]CrossRefGoogle ScholarPubMed
Friedman, M. I., Emmerich, A. L., & Gil, K. M. (1980) Effects of insulin on food intake and plasma glucose level in fat-fed diabetic rats. Physiology and Behavior 24:319–325. [MIF]CrossRefGoogle ScholarPubMed
Friedman, M. I., & Stricker, E. M. (1976) The physiological psychology of hunger: a physiological perspective. Psychological Review 83:409–431. [DAB, MIF, EMS]CrossRefGoogle Scholar
Frohman, L. A., & Bernardis, L. L. (1971) Effect of hypothalamus stimulation on plasma glucose, insulin and glucagon levels. American Journal of Physiology 221:1596–1603. [JLM]CrossRefGoogle ScholarPubMed
Frohman, L. A., Bernardis, L. L., Schnatz, J. D., & Burek, L. (1969) Plasma insulin and triglyceride levels after hypothalamic lesions in weanling rats. American Journal of Physiology 216(6):1496–1501. [JLM]CrossRefGoogle ScholarPubMed
Frohman, L. A., & Nagai, K. (1976) Central nervous system-mediated stimulation of glucagon secretion in the fog following 2-deoxy-D-glucose. Metabolism 25(suppl. 1):1449–1452. [JLM]CrossRefGoogle Scholar
Fuller, R. W., & Diller, E. R. (1970) Diurnal variation of liver glycogen and plasma free fatty acids in rats fed ad libitum or single daily meal. Metabolism 19:226–229. [JLM]CrossRefGoogle ScholarPubMed
Gagliardino, J. J., Pessacq, M. T., Hernandez, R. E., Rebolledo, O. R. (1978) Circadian variations in serum glucagon and hepatic glycogen and cyclic AMP concentrations. Journal of Endocrinology 78:297–298. [JLM]CrossRefGoogle ScholarPubMed
Gerich, J. E., Karam, J. H., & Forsham, P. H. (1973) Stimulation of glucagon secretion by epinephrine in man. Journal of Clinical Endocrinology and Metabolism 37:479–481. [KTB]CrossRefGoogle ScholarPubMed
Gibbs, F. P. (1979) Fixed interval feeding does not entrain the circadian pacemaker in blind rats. American Journal of Physiology 236:R249–253. [SA]Google Scholar
Gibson, T., & Jarrett, R. J. (1972) Diurnal variation in insulin sensitivity. Lancet 11:947–948. [JLM]CrossRefGoogle Scholar
Gibson, T., Stimmler, L., Jarrett, R. J., Rutland, P., & Shiu, M. (1975) Diurnal variation in the effects of insulin on blood glucose plasma non-esterified fatty acids and growth hormone. Diabetologia 11:83–88. [JLM]CrossRefGoogle ScholarPubMed
Glick, Z., & Modan, M. (1977a) Behavioral compensatory responses to continuous duodenal and upper ilial glucose infusion in rats. Physiology and Behavior 19(6):703–706. [JLM]CrossRefGoogle Scholar
Glick, Z., & Modan, M. (1977b) Control of food intake during continuous injection of glucose into the upper duodenum and the upper ileum of rats. Physiological Psychology 5(1):7–10. [JLM]CrossRefGoogle Scholar
Gold, R. M., Jones, A. P., Sawchenko, P. E., & Kapatos, G. (1977) Paraventricular area: critical focus of a longitudinal neurocircuitry mediating food intake. Physiology and Behavior 20:1–8. [KTB]Google Scholar
Gold, R. M., & Kapatos, G. (1975) Delayed hyperphagia and increased body length after hypothalamic knife cuts in weanling rats. Journal of Comparative and Physiological Psychology 88:202–209. [KTB]CrossRefGoogle ScholarPubMed
Gold, R. M., Sawchenko, P. E., De Luca, C., Alexander, J., & Eng, R. (1980) Vagal mediation of hypothalamic obesity but not of supermarket dietary obesity. American Journal of Physiology 238(5):R447–453. [JLM, AS]Google Scholar
Gold, R. M., Sumprer, C., Ueberacher, H. M., & Kapatos, G. (1975) Hypothalamic hyperphagia despite imposed diurnal or nocturnal feeding and drinking rhythms. Physiology and Behavior 14(6):861–866. [JLM, AS]CrossRefGoogle ScholarPubMed
Goldman, J. M., Schnatz, J. D., Bernardis, L. L., & Frohman, L. A. (1972) Effects of VM hypothalamic destruction in rats with preexisting streptozotocin induced diabetes. Metabolism 21:132–136. [JLM]CrossRefGoogle Scholar
Goodner, C. J., Walike, B. C., Koerker, D. J., Ensinck, J. W., Brown, A. C., Chideckel, E. W., Palmer, J., & Kalnasy, L. (1977) Insulin, glucagon and glucose exhibit synchronous, sustained oscillations in fasting monkeys. Science 195(4274): 177–179. [JLM, NR]CrossRefGoogle ScholarPubMed
Gorman, R. R., Tepperman, H. M., Tepperman, J. (1972) Effects of starvation refeeding and fat feeding on adiposite ghost adenyl cyclase activity. Journal of Lipid Research 13:276–280. [RJW]CrossRefGoogle Scholar
Graham, J. M., & Desjardins, C. (1980) Classical conditioning: induction of luteinizing hormone and testosterone secretion in anticipation of sexual activity. Science 210(4473):1039–1040. [JLM]CrossRefGoogle ScholarPubMed
Greenwood, K., Armstrong, S., & Coleman, G. (1981, in press) Failure of periodic presentation of palatable diet to entrain feeding, drinking and activity rhythms under constant light. Physiology and Behavior. [SA]CrossRefGoogle Scholar
Grossman, S. P. (1975) Role of the hypothalamus in the regulation of food and water intake. Psychological Review 82:200–224. [RCC]CrossRefGoogle ScholarPubMed
Hales, C. N., & Kennedy, G. C. (1964) Plasma glucose, non-esterified fatty acid and insulin concentrations in hypothalamic-hyperphagic rats. Biochemical Journal 90:620–624. [BMK]CrossRefGoogle ScholarPubMed
Han, P. W. (1967) Hypothalamic obesity in rats without hyperphagia. Transactions of the New York Academy of Sciences 30:229–243. [BMK]CrossRefGoogle ScholarPubMed
Han, P. W., & Frohman, L. A. (1970) Hyperinsulinemia in tube-fed hypophysectomized rats bearing hypothalamic lesions. American Journal of Physiology 219:1632–1636. [BMK]CrossRefGoogle ScholarPubMed
Han, P. W., & Liu, A. C. (1966) Obesity and impaired growth of rats force fed 40 days after hypothalamic lesions. American Journal of Physiology 211(1):229–231. [JLM]CrossRefGoogle ScholarPubMed
Harrell, L. E., de Castro, J. M., & Balagura, S. (1975) A critical evaluation of body weight loss following lateral hypothalamic lesions. Physiology and Behavior 15:133–136 [JMdC]CrossRefGoogle ScholarPubMed
Hernandez, L. H., & Hoebel, B. G. (1980) Basic mechanisms of feeding and weight regulation. In: Obesity, ed. Stunkard, A. J., pp. 25–47. Philadelphia: Saunders. [RCC]Google Scholar
Hervey, G. R. (1959) The effects of lesions in the hypothalamus in parabiotic rats. Journal of Physiology 145:336–352. [JLM, JP]CrossRefGoogle ScholarPubMed
Hervey, G. R., Parameswaran, S. V., & Steffens, A. B. (1977) The effects of lateral hypothalamic stimulation in parabiotic rats. Journal of Physiology 266(3):64. [JLM]Google ScholarPubMed
Hoebel, B. G. (1968) Inhibition and disinhibition of self-stimulation and feeding: hypothalamic control and postingestional factors. Journal of Comparative and Physiological Psychology 66:89–100. [JLM]CrossRefGoogle ScholarPubMed
Hoebel, B. G. (1977) The psychopharmacology of feeding. In: Handbook of Psychopharmacology, ed. Iversen, L. L., Iversen, S. D., & Snyder, S. H., vol. 8, pp. 55–129. New York: Plenum Press. [RCC]Google Scholar
Hoebel, B. G. (1979) Hypothalamic self-stimulation and stimulation escape in relation to feeding and mating. Federation Proceedings 38(11):2454–2461. [JLM]Google ScholarPubMed
Hoebel, B., & Teitelbaum, P. (1966) Weight regulation in normal and hypothalamic hyperphagic rats. Journal of Comparative and Physiological Psychology 61:189–193. [JLM]CrossRefGoogle ScholarPubMed
Hokfelt, T., Elde, R., Fuxe, K., Johansson, D., Ljungdahl, A., Goldstein, M., Luft, R., Efendic, S., Nilsson, G., Terenius, L., Ganten, D., Jeffcoate, S. L., Rehfeld, J., Daid, S., Perez De La Mora, M., Possani, L., Tapia, R., Terani, L., & Palacios, R. (1978) Aminergic and peptidergic pathways in the nervous system with special reference to the hypothalamus. In: The hypothalamus, ed. Reichlin, S., Baldessarini, R. J., & Martin, J. B., pp. 69–135. New York: Raven Press. [KTB]Google ScholarPubMed
Horwitz, D. L., Rubenstein, A. H., Reynolds, C., Molnar, G. D., & Yanaihara, N. (1975) Prolonged suppression of insulin release by insulin-induced hypoglycemia: demonstration by C-peptide assay. Hormone and Metabolic Research 7(6):449–451. [JLM]CrossRefGoogle ScholarPubMed
Hustvedt, B. E., & Løvø, a. (1972) Correlation between hyperinsulinemia and hyperphagia in rats with ventromedial hypothalamic lesions. Acta Physiologica Scandinavica 84(1):29–33. [BMK, JLM]CrossRefGoogle ScholarPubMed
Inoue, S., Bray, G. A., & Mullen, Y. S. (1978) Transplantation of pancreatic beta cells prevents development of hypothalamic obesity in rats. American Journal of Physiology 235 (3):E266–E271. [BMK, JLM]Google ScholarPubMed
Ishikawa, K. and Shimazu, T. (1980) Circadian rhythms of liver glycogen metabolism in rats: effects of hypothalamic lesions. American Journal of Physiology 238(1):E21–E25. [JLM, AS]Google ScholarPubMed
Jouhaneau, M. (1978) Meal pattern of hypophysectomized rats. Physiology and Behavior 20:109–112. [JLM]CrossRefGoogle Scholar
Kadekaro, M., Timo-Iaria, C., & Valle, L. E. R. (1975) Neural systems responsible for the gastric secretion provoked by 2-deoxy-D-glucose cytoglucopenia. Journal of Physiology (London) 252(3):565–584. [JLM]CrossRefGoogle Scholar
Kakolewski, J. W., Deaux, E., Christensen, J., & Carre, B. (1971) Diurnal patterns in water and food intake and body weight changes in rats with hypothalamic lesions. American Journal of Physiology 221:711–718. [JLM]CrossRefGoogle ScholarPubMed
Kanarek, R., Cox, R., & Mayer, J. (1976) Diurnal patterns of feeding in rats as a function of diet palatability. Paper presented at the Eastern Psychological Association Meeting. [RBK]Google Scholar
Kanarek, R. B., & Marks-Kaufman, R. (1979) Developmental aspects of sucrose-induced obesity in rats. Physiology and Behavior 23(5):881–886. [JLM]CrossRefGoogle ScholarPubMed
Kanarek, R. B., & Mayer, J. (1978) 2-deoxy-D-glucose induced feeding: relation to diet palatability. Pharmacology, Biochemistry and Behavior 8:615–617. [RBK]CrossRefGoogle ScholarPubMed
Kanarek, R. B., Salomon, M., & Khadavi, A. (1981) Rats with lateral hypothalamic lesions do eat following acute cellular glucoprivation. American Journal of Phsyiology, in press. [RBK]Google ScholarPubMed
Kavanau, J. L., & Rischer, C. E. (1968) Program clocks in small mammals. Science 161:1256–1259. [SA]CrossRefGoogle ScholarPubMed
Keesey, R. E., Boyle, P. C., & Storlien, L. H. (1978) Food intake and utilization in lateral hypothalamically lesioned rats. Physiology and Behavior 21:265–268. [BJC]CrossRefGoogle ScholarPubMed
Kennedy, G. C. (1950) The hypothalamic control of food intake in rats. Proceedings of the Royal Society of London (B) 137:535–549. [JLM]Google ScholarPubMed
Kimura, T., Maji, T., & Ashida, K. (1970) Periodicity of food intake and lipogenesis in rats subjected to two different feeding plans. Journal of Nutrition 100:691–697. [JLM]CrossRefGoogle ScholarPubMed
King, B. M., Carpenter, R. G., Stamoutsos, B. A., Frohman, L. A., & Grossman, S. P. (1978) Hyperphagia and obesity following ventromedial hypothalamic lesions in rats with subdiaphragmatic vagotomy. Physiology and Behavior 20:643–651. [BMK, JLM]CrossRefGoogle ScholarPubMed
King, B. M., Phelps, G. R. & Frohman, L. A. (1980) Hypothalamic obesity in female rats in absence of vagally mediated hyperinsulinemia. American Journal of Physiology 239:E437–E441. [BMK]Google ScholarPubMed
Kissileff, H. R. (1970) Free feeding in normal and “recovered lateral” rats monitored by a pellet-detecting eatometer. Physiology and Behavior 5(2):163–174. [JLM]CrossRefGoogle ScholarPubMed
Kogure, S., Onoda, N., & Takagi, S. F. (1980) Responses of lateral hypothalamic neurons to odours before and during stomach distention in unanesthetized rabbits. Proceedings of XXVIIIth International Congress on Physiological Sciences. Budapest. International Union of Physiological Sciences. [JLM]Google Scholar
Kokka, N., Eisenberg, R., Garcia, J., & George, R. (1972) Blood glucose growth hormone and Cortisol levels after hypothalamic stimulation. American Journal of Physiology 222(2):296–301. [JLM]CrossRefGoogle ScholarPubMed
Kokka, N., & George, R. (1970) Effect of hypothalamic stimulation on blood glucose in the rabbit. Neuroendocrinology 6(1):l–9. [JLM]CrossRefGoogle ScholarPubMed
Komisaruk, B. R., & Beyer, C. (1972) Responses of diencephalic neurons to olfactory bulb stimulation, odor and arousal. Brain Research 36:153–170. [JLM]CrossRefGoogle ScholarPubMed
Kraly, F. S., Carty, W. J., & Smith, G. P. (1978) Effect of pregastric food stimuli on meal size and intermeal interval in the rat. Physiology and Behavior 20(6):779–784. [JLM]CrossRefGoogle Scholar
Kraly, F. S., & Smith, G. P. (1978) Combined pregastric and gastric stimulation by food is sufficient for normal meal size. Physiology and Behavior 21(3):405–408. [JLM]CrossRefGoogle ScholarPubMed
Lackey, W. W., Broome, L. A., Goetting, J. A., & Vaughan, D. A. (1970) Diurnal patterns of rats determined by calorimetry under controlled conditions. Journal of Applied Physiology 29:824–829. [MIF]CrossRefGoogle ScholarPubMed
Landon, J., Greenwood, F. C., Stamp, T. C. B., & Wynn, W. (1966) The plasma sugar, free fatty acid, Cortisol and growth hormone response to insulin and the comparison of this procedure with other tests of pituitary and adrenal function: II. In patients with hypothalamic or pituitary dysfunction or anorexia nervosa. Journal of Clinical Investigation 45:437–449. [RCC]CrossRefGoogle ScholarPubMed
Larue, C., & Le Magnen, J. (1972) The olfactory control of meal pattern. Physiology and Behavior 9:817–821. [JLM]CrossRefGoogle ScholarPubMed
Larue-Achagiotis, C., & Le Magnen, J. (1979a) The different effects of continuous night and day-time insulin infusion on the meal pattern of rats: comparison with the meal pattern of hyperphagic hypothalamic rats. Physiology and Behavior 22:435–439. [JLM]CrossRefGoogle ScholarPubMed
Larue-Achagiotis, C., & Le Magnen, J. (1979b) Dual effects of 2-deoxy-D-glucose on food intake in the rat: inhibition at night and stimulation in the day-time. Physiology and Behavior 23:865–869. [SA]CrossRefGoogle ScholarPubMed
Lefebvre, P., Luyckx, A., & Bacq, Z. M. (1973) Effects of denervation on the metabolism and the response to glucagon of white adipose tissue of rats. Hormone and Metabolic Research 5(4):245–249. [JLM]CrossRefGoogle Scholar
Leibowitz, S. F. (1975) Amphetamine: possible site and mode of action for producing anorexia in the rat. Brain Research 84:160–167. [KTB]CrossRefGoogle ScholarPubMed
Leibowitz, S. F. (1978) Paraventricular nucleus: a primary site mediating adrenergic stimulation of feeding and drinking. Pharmacology, Biochemistry, and Behavior 8:163–175. [KTB]CrossRefGoogle ScholarPubMed
Leibowitz, S. F., & Rossakis, C. (1979) Mapping study of brain dopamine- and epinephrine sensitive sites which cause feeding supression in the rat. Brain Research 172:101–113. [KTB]CrossRefGoogle Scholar
Le Magnen, J. (1955) Sur le mécanisme d'établissement des appétits caloriques. Comptes rendus de I'Académie des Sciences 240:2436–2438. [JLM]Google Scholar
Le Magnen, J. (1956a) Effet sur la prise alimentaire du rat blanc des administrations postprandiales d'insuline et le mécanisme des appétits caloriques. Journal de Physiologie 48:789–802. [JLM]Google Scholar
Le Magnen, J. (1956b) Hyperphagie provoquée chez le rat blanc par altération du mécanisme de satiété périphérique. Comptes rendus de la Société de Biologic (Paris) 150:32–34. [JLM]Google Scholar
Le Magnen, J. (1959) Etude d'un phénomène d'appétit provisionnel. Comptes rendus de l'Académie des Sciences (Paris) 249:2400–2402. [JLM]Google Scholar
Le Magnen, J. (1960) Effet d'une pluraliteacute; de stimuli alimentaires sur le déterminisme quantitatif de l'ingestion. Archives des Sciences Physiologiques 14:411–419. [JLM]Google Scholar
Le Magnen, J. (1969) Peripheral and systemic actions of food in the caloric regulation of intake. Annals of New York Academy of Sciences 157(2):1126–1127. [JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J. (1976) Interactions of glucostatic and lipostatic mechanisms in the regulatory control of feeding. In: Hunger: basic mechanisms and clinical implications, ed. Novin, D., Wyrwicka, W., & Bray, G., pp. 89–101. New York: Raven Press. [JLM]Google Scholar
Le Magnen, J. (1977) Hunger and food palatability in the control of feeding behavior. In: Food intake and chemical senses, ed. Katsuki, Y., Sato, M., Takagi, S., & Oomura, Y., pp. 263–280. Tokyo: University of Tokyo Press. [JLM]Google Scholar
Le Magnen, J. (1980) Overview: the body energy regulation: the three brain responses to glucopenia. Neuroscience and Biobehavioral Reviews 4(suppl. 1):65–72. [JLM]CrossRefGoogle Scholar
Le Magnen, J., A Devos, M. (1970) Metabolic correlates of the meal onset in the free food intake of rats. Physiology and Behavior 5(7):805–814. [DAB, KTB, JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J., A Devos, M. (1980a) Parameters of the meal pattern in rats: their assessment and physiological significance. Neuroscience and Biobehavioral Reviews 4(suppl. 1):1–11. [JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J., A Devos, M. (1980b) Variations of meal-to-meal liver glycogen in rats. Neuroscience and Biobehavioral Reviews 4(suppl. 1):29–32. [KTB, JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J., Devos, M., Gaudillière, J. P., Louis-Sylvestre, J., & Tallon, S. (1973) Role of a lipostatic mechanism in regulation by feeding of energy balance in rats. Journal of Comparative and Physiological Psychology 84(1):1–23. [DAB, KTB, JPF, JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J., Devos, M., & Larue-Achagiotis, C. (1980) Food deprivation induced parallel changes in blood glucose, plasma free fatty acids and feeding during the two parts of the diurnal cycle in rats. Neuroscience and Biobehavioral Reviews 4(suppl. 1):17–23. [MIF, JLM]CrossRefGoogle ScholarPubMed
Le Magnen, J., & Tallon, S. (1963) Enregistrement et analyse preliminaire de la “périodicité alimentaire spontanée” chez le rat blanc. Journal de Physiologie 55:286–297. [JLM]Google Scholar
Le Magnen, J., & Tallon, S. (1966) La périodicité spontanée de la prise d'aliments ad libitum du rat blanc. Journal de Physiologie 58:323–349. [JLM]Google Scholar
Leveille, G. A. & Chakabarty, K. (1967) Diurnal variation in tissue glycogen and liver weight of meal fed rats. Journal of Nutrition 93:546–554. [RJW]CrossRefGoogle Scholar
Levin, R., & Levine, S. (1974) Ecological determinants of circadian rhythms in rats. Paper presented at the Eastern Psychological Association Meeting. [RBK]Google Scholar
Likuski, H. J., Debons, A. F., & Cloutier, R. J. (1967) Inhibition of gold thioglucose induced obesity by glucose analogs. American Journal of Physiology 212:669–176. [JLM]CrossRefGoogle Scholar
Lin, M. H., Romsos, D. R., Akera, T., & Leveille, G. A. (1978) Na+, K+ ATPase enzyme units in skeletal muscle from lean and obese mice. Biochemical and Biophysical Research Communications 80:398–404. [BJC]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J. (1976) Preabsorptive insulin release and hypoglycemia in rats. American Journal of Physiology 230:56–60. [BMK, JLM]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J. (1978a) Feeding and metabolic patterns in rats with truncular vagotomy or with transplanted β-cells. American Journal of Physiology 235:E119–E125. [LLB, BMK, JLM]Google ScholarPubMed
Louis-Sylvestre, J. (1978b) La modulation par voie nerveuse de l'insulino-secrétion et son rôle dans la prise alimentaire. Thèse de Doctoral d'Etat, Paris. [JLM]Google Scholar
Louis-Sylvestre, J. (1978c) Relationship between two stages of prandial insulin release in rats. American Journal of Physiology 235:E103–E111 [BMK]Google ScholarPubMed
Louis-Sylvestre, J., Giachetti, I., & Le Magnen, J. (unpublished) The effect of palatability on meal size is dependent on the cephalic phase of insulin secretion. [JLM]Google Scholar
Louis-Sylvestre, J., & Le Magnen, J. (1980a) A fall in blood glucose level precedes meal onset in free-feeding rats. Neuroscience and Biobehavioral Reviews 4(suppl. 1):13–16. [JPF, JLM, AS]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J., & Le Magnen, J. (1980b) Palatability and preabsorptive insulin release. Neuroscience and Biobehavioral Reviews 4(suppl. 1):43–46. [JLM, AS]CrossRefGoogle ScholarPubMed
Louis-Sylvestre, J., & Le Magnen, J. (1980c) Reciprocal interaction between food palatibility and vagally-mediated preabsorptive insulin release: suppression of differential food palatability in vagotomized rats. 7th International Conference on the Physiology of Food and Fluid Intake (ICPFFI VII), Warsaw (not published). [JLM]Google Scholar
Luiten, P. G., & Room, P. (1980) Interrelations between lateral, dorsomedial and ventromedial hypothalamic nuclei in the rat: an HRP study. Brain Research 190:331–332. [JLM]CrossRefGoogle ScholarPubMed
McLaughlin, C. L., Baile, G. A., Trueheart, P. A., & Mayer, J. (1973) Factors influencing the lesioning effect of gold thioglucose on the ventromedial hypothalamus of Bar Habor obese mice. Physiology and Behavior 10(2):339–344. [JLM]CrossRefGoogle Scholar
Maddison, S., & Horrell, R. I. (1979) Hypothalamic unit responses to alimentary perfusions in the anesthetized rats. Brain Research Bulletin 4(2):259–266. [JLM]CrossRefGoogle Scholar
Malherbe, G., DeGasparo, M., Hertog, R., & Hoet, J. J. (1969) Circadian variations in blood sugar and plasma insulin levels in man. Diabetologia 5:397–404. [JLM]CrossRefGoogle ScholarPubMed
Marshall, J. F., & Teitelbaum, P. (1974) Further analysis of sensory inattention following lateral hypothalamic damage in rats. Journal oj Comparative and Physiological Psychology 86(3):375–395. [JLM]CrossRefGoogle ScholarPubMed
Marshall, J. F., Turner, B. H., & Teitelbaum, P. (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174(4008):523–525. [MIF, JLM]CrossRefGoogle ScholarPubMed
Mayer, J. (1955) Regulation of energy intake and body weight: The glucostatic theory and the lipostatic hypothesis. Annals of the New York Academy of Sciences 63:15–43. [JDD, JP]CrossRefGoogle ScholarPubMed
Mayer, J., & Arees, E. A. (1968) Ventromedial glucoreceptor system. Federation Proceedings 27(6):1345–1348. [JLM]Google ScholarPubMed
Mayer, J., & Marshall, N. (1956) Specificity of gold thioglucose for ventromedial hypothalamic lesions and obesity. Nature 178:1399–1400. [JLM]CrossRefGoogle Scholar
Mei, N. (1978) Vagal glucoreceptors in the small intestine of the cat. Journal of Physiology 282:485–506. [JLM]CrossRefGoogle ScholarPubMed
Miller, N. E. (1955) Shortcomings of food consumption as a measure of hunger: results from other behavioral techniques. Annals of the New York Academy of Sciences 63(art. 1):141–143. [JLM]CrossRefGoogle ScholarPubMed
Mitchell, T. A., Smyrl, R., Hutchings, M., Schindler, W. T., & Critchlow, V. (1972) Plasma growth hormone levels in rats with increased naso-anal length due to hypothalamic surgery. Neuroendocrinology 10:31–45. [KTB]CrossRefGoogle ScholarPubMed
Moore, R. Y. (1980) Suprachiasmatic nucleus, secondary synchronizing stimuli and the central neural control of circadian rhythms. Brain Research 183(1):13–28. [JLM]CrossRefGoogle ScholarPubMed
Moore, R. Y., & Lenn, N. J. (1972) A retinohypothalamic projection in the rat. Journal of Comparative Neurology 146:1–14. [AAN]CrossRefGoogle ScholarPubMed
Morgane, P. J. (1969) The function of the limbic and rhinic forebrain-limbic midbrain systems and reticular formation in the regulation of food and water intake. Annals of the New York Academy of Sciences. 157:806–848. [JA]CrossRefGoogle ScholarPubMed
Morgane, P. J. (1977) A new look at ventromedial-lateral hypothalamic interrelations. Presented at 6th International Conference on Physiology of Food and Fluid Intake, Jouy en Josas (France). [JLM]Google Scholar
Morrison, S. D. (1968) The relationship of energy expenditures and spontaneous activity to the aphagia of rats with lesions in the lateral hypothalamus. Journal of Physiology (London) 197:325–343. [JMdC]CrossRefGoogle Scholar
Mosko, S. S., & Moore, R. Y. (1979) Neonatal suprachiasmatic nucleus lesions: effects on the development of circadian rhythms in the rat. Brain Research 164(l-2):17–38. [JLM]CrossRefGoogle ScholarPubMed
Mrosovsky, N. (1976) Lipid programmes and life strategies in hibernators. American Zoologist 16:685–697. [NM]CrossRefGoogle Scholar
Mrosovsky, N. (1977) Hibernation and body weight in dormice: a new type of endogenous cycle. Science 196:902. [JLM]CrossRefGoogle ScholarPubMed
Mrosovsky, N., & Melnyk, R. B. (1981) Towards new animal models in obesity research. International Journal of Obesity, in press. [NM]Google Scholar
Mrosovsky, N., & Powley, T. L. (1977) Set points for body weight and fat. Behavioral Biology 20:205–223. [NM]CrossRefGoogle ScholarPubMed
Mrosovsky, N., & Sherry, D. F. (1980) Animal anorexias. Science 207:837–842. [JLM, NM]CrossRefGoogle ScholarPubMed
Muller, K., & Hsiao, S. (1978) Current status of CCK as a short-term satiety hormone. Neuroscience and Biobehavioral Reviews 2:79–87. [JLM]CrossRefGoogle Scholar
Nagai, K., Nishio, T., Nakagawa, H., Nakamura, S., & Fukuda, Y. (1978) Effect of bilateral lesions of the suprachiasmatic nuclei on the circadian rhythm of food intake. Brain Research 142:384–389. [SA, AS]CrossRefGoogle ScholarPubMed
Natelson, B. H., & Bonbright, J. C. (1978) Patterns of eating and drinking in the monkeys when food and water are free and when they are earned. Physiology and Behavior 21:201–214. [JLM]CrossRefGoogle ScholarPubMed
Nicolaidis, S. (1974) Short term and long term regulation of energy balance. Proceedings of the International Union of Physiological Sciences 10:122–123. [BJC]Google Scholar
Nicolaidis, S., Danguir, J., & Mather, P. (1979) A new approach of sleep and feeding behaviors in the laboratory rat. Physiology and Behavior 23:717–722. [NR]CrossRefGoogle ScholarPubMed
Nicolaidis, S., & Rowland, N. (1976) Metering of intravenous versus oral nutrients and regulation of energy balance. American Journal of Physiology 231(3):661–668. [BJC, JLM, NR]CrossRefGoogle ScholarPubMed
Niijima, A. (1975) The effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of sympathetic nerves. Journal of Physiology 251:231–243. [JLM]CrossRefGoogle ScholarPubMed
Nikoletseas, M. M. (1980) Food intake in the exercising rat: a brief review. Neuroscience and Biobehavioral Reviews 4:265–268. [JMdC]CrossRefGoogle ScholarPubMed
Nishino, H., Koizumi, K., & Brooks, C. McC. (1976) The role of suprachiasmatic nuclei of the hypothalamus in the production of circadian rhythm. Brain Research 112:45–60. [JLM]CrossRefGoogle ScholarPubMed
Nishio, T., Shiosaka, S., Nakagawa, H., Sakumoto, T., & Satoh, K.Circadian feeding rhythm after hypothalamic knife-cut isolating suprachiasmatic nucleus. Physiology and Behavior 23:763–769. [AS]CrossRefGoogle Scholar
Norberg, K., & Siesjo, B. K. (1976) Oxidative metabolism of the cerebral cortex of the rat in severe insulin-induced hypoglycemia. Journal of Neurochemistry 26(2):345. [JLM]CrossRefGoogle Scholar
Norgren, R. (1976) Taste pathways to hypothalamus and amygdala. Journal of Comparative Neurology 166(1):17–30. [JLM]CrossRefGoogle ScholarPubMed
Novin, D., & VanderWeele, D. A. (1977) Visceral involvement in feeding: there is more to regulation than the hypothalamus. In: Progress in psychobiology and physiological psychology, vol. 7, ed. Sprague, J. M., & Epstein, A. N., pp. 193–241. New York: Academic Press. [JLM]Google Scholar
Nunez, A. A., & Casati, M. J. (1979) The role of efferent connections of the suprachiasmatic nucleus in the control of circadian rhythms. Behavioral and Neural Biology 25(2):263–267. [JLM]CrossRefGoogle ScholarPubMed
Paik, H. S. & Yearick, E. S. (1978) The influence of dietary fat and meal frequency on lipoprotein lipase and hormone-sensitive lipase in rat adipose tissue. Journal of Nutrition 108:1798–1805. [RJW]CrossRefGoogle ScholarPubMed
Palka, Y., Liebelt, R., & Critchlow, V. (1971) Obesity and increased growth following partial or complete isolation of ventromedial hypothalamus. Physiology and Behavior 7:187–194. [KTB]CrossRefGoogle ScholarPubMed
Panksepp, J. (1971) Is satiety mediated by the ventromedial hypothalamus? Physiology and Behavior 7:381–384. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J. (1972) Hypothalamic radioactivity after intragastric glucose-14C in rats. American Journal of Physiology 58:226–232. [JP]Google Scholar
Panksepp, J. (1973) Reanalysis of feeding patterns in the rat. Journal of Comparative and Physiological Psychology 82:78–94. [JLM, JP]CrossRefGoogle ScholarPubMed
Panksepp, J. (1975) Central metabolic and humoral factors involved in the neural regulation of feeding. Pharmacology Biochemistry and Behavior, suppl. 1,3:107–119. [JP]Google Scholar
Panksepp, J. (1976) On the nature of feeding patterns. Primarily in rats. In: Hunger: basic mechanisms and clinical implications, ed. Novin, D., Wyrwicka, W., & Bray, G. A., pp. 369–382. New York: Raven Press. [JLM]Google Scholar
Panksepp, J. (1981) Hypothalamic integration of behavior: rewards, punishments, and related psychological processes. In: Handbook of the hypothalamus: 3, pt. B. Behavioral studies of the hypothalamus, ed. Morgane, P. J. and Panksepp, J., pp. 289–431. New York: Marcel Dekker. [JP]Google Scholar
Panksepp, J., & Krost, K. (1975) Modification of diurnal feeding patterns by palatability. Physiology and Behavior 15:673–677. [RBK]CrossRefGoogle ScholarPubMed
Panksepp, J., & Meeker, R. (1976) Suppression of food intake in diabetic rats by voluntary consumption and intrahypothalamic injection of glucose. Physiology and Behavior 16:763–770. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., & Meeker, R. (1980) The role of CABA in the ventromedial hypothalamic regulation of food intake. Brain Research Bulletin, suppl. 2 (GABA Neurotransmission) 5:453–460. [JP]CrossRefGoogle Scholar
Panksepp, J., & Nance, D. M. (1972) Insulin, glucose, and hypothalamic regulation of feeding. Physiology and Behavior 9:609–614. [JP]CrossRefGoogle ScholarPubMed
Panksepp, J., Pollack, A., Krost, K., Meerer, R., & Ritter, M. (1975) Feeding in response to repeated protamin-zinc insulin injections. Physiology and Behavior 14:487–494. [JLM]CrossRefGoogle Scholar
Panksepp, J., & Ritter, M. (1975) Mathematical analysis of energy regulatory patterns of normal and diabetic rats. Journal of Comparative and Physiological Psychology 89:1019–1028. [JLM]CrossRefGoogle ScholarPubMed
Panksepp, J., & Rossi, J. III (1981) D-glucose infusions into the basal ventromedial hypothalamus and feeding. Behavioral Brain Research, in press. [JP]CrossRefGoogle ScholarPubMed
Pauly, J., & Scheving, L. (1967) Circadian rhythms in blood glucose and effect of different lighting schedules, hypophysectomy, adrenal medullectomy and starvation. American Journal of Anatomy 120:627–636. [LLB]CrossRefGoogle ScholarPubMed
Peck, J. W. (1978) Rats defend different body weights depending on palatability and accessibility of their food. Journal of Comparative and Physiological Psychology 92:555–570. [JWP]CrossRefGoogle ScholarPubMed
Peck, J. W. (1979) Active regulation to be lean by rats with ventromedial hypothalamic lesions. Journal of Comparative and Physiological Psychology 93:695–707. [JWP]CrossRefGoogle ScholarPubMed
Peck, J. W. (1980) Homeostatic analyses and relations between nutrition and ecology. In: Analysis of motivational processes, ed. Toates, F. M. & Halliday, T. R., pp. 179–202. London: Academic Press. [JWP]Google Scholar
Pénicaud, L., & Le Magnen, J. (1980a) Aspects of the neuroendocrine bases of the diurnal metabolic cycle in rats. Neuroscience and Biobehavioral Reviews 4(suppl. 1):39–42. [JLM]CrossRefGoogle ScholarPubMed
Pénicaud, L., & Le Magnen, J. (1980b) Recovery of body weight following starvation of food restriction in rats. Neuroscience and Biobehavioral Reviews 4(suppl. 1):47–52. [JLM]CrossRefGoogle ScholarPubMed
Peret, J., Macaire, I., & Chanez, M. (1973) Schedule of protein ingestion nitrogen and energy utilization and circadian rhythm of hepatic glycogen, plasma corticosterone and insulin in rats. Journal of Nutrition 103:866–874. [JLM]CrossRefGoogle ScholarPubMed
Pessacq, M., Rebolledo, O., Mercer, R., & Gagliardino, J. J. (1976) Effect of fasting on the circadian rhythm of serum insulin levels. Chronobiologia 3:20–26. [LLB]Google ScholarPubMed
Petersen, S. (1978) Feeding, blood glucose and plasma insulin of mice at dusk. Nature 275:647–648. [DAB, JLM, NR]CrossRefGoogle ScholarPubMed
Pokrovsky, V., & Le Magnen, J. (1963) Réalisation d'un dispositif d'enregistrement graphique continu et automatique de la consommation alimentaire du rat blanc. Journal de Physiologie 55:318–319. [JLM]Google Scholar
Powley, T. L., & Opsahl, C. A. (1974) Ventromedial hypothalamic obesity abolished by subdiaphragmatic vagotomy. American Journal of Physiology 226:25–33. [BMK, JLM]Google Scholar
Puls, W., Keup, U., Krause, H. P., Thomas, G., & Hoffmeister, F. (1977) Glucosidase inhibition: a new approach to the treatment of diabetes, obesity and hyperlipoproteinemia. Naturwissenschaften 64:536–537. [JPF]CrossRefGoogle Scholar
Quartermain, D., Kissileff, H., Shapiro, R., & Miller, N. E. (1971) Suppression of food intake with intragastric loading: relation to natural feeding cycle. Science 173:941–943. [JLM, FMT]CrossRefGoogle ScholarPubMed
Rezek, M., Havlicek, V., & Friesen, H. (1978) Caloric imbalance induced by failure of food intake to compensate for caloric supply provided by diurnal or nocturnal drinking of isotonic glucose. Physiology and Behavior 20(2): 197–200. [JLM]CrossRefGoogle ScholarPubMed
Rezek, M., Havlicek, V., & Hughes, R. (1978) Paradoxical stimulation of food intake by large loads of glucose, fructose and mannose: evidence for a positive feedback effect. Physiology and Behavior 21(2):243–250. [JLM]CrossRefGoogle Scholar
Rezek, M., VanderWeele, D. A., & Novin, D. (1975) Stages in the recovery of feeding following vagotomy in rabbits. Behavioral Biology 14(1):75–84. [JLM]CrossRefGoogle ScholarPubMed
Richter, C. P. (1922). A behavioristic study of the activity of the rat. Comparative Psychology Monographs 1:1–55. [JMdC]Google Scholar
Richter, C. P. (1960) Biological clocks in medicine and psychiatry: shock-phase hypothesis. Proceedings of the National Academy of Science (USA) 46:1506–1530. [SA]CrossRefGoogle Scholar
Richter, C. P. (1965) Biological clocks in medicine and psychiatry. Springfield, Ill.: Charles C. Thomas. [AAN, NM]Google Scholar
Rietveld, W. J., Ten Hoor, F., Kooij, M., & Flory, W. (1978) Changes in 24-hour fluctuations of feeding behavior during hypothalamic hyperphagia in rats. Physiology and Behavior 21:615–622. [AS, NM]CrossRefGoogle ScholarPubMed
Ritter, R. C., Roelke, M., & Neville, M. (1978) Glucoprivic feeding behavior in absence of other signs of glucoprivation. American Journal of Physiology 234:E617–E621. [MIF, NR]Google ScholarPubMed
Ritter, R. C., Slusser, P. G. & Stone, S. (in press) Glucoreceptors controlling feeding and blood glucose: Location in the hindbrain. Science. [RCR]Google Scholar
Rolls, B. J., Rolls, E. T., Rowe, E. A., & Sweeney, K. (1981) Sensory specific satiety and appetite. Physiology and Behavior, (in press). [JLM]CrossRefGoogle Scholar
Rolls, E. T., Burton, M. J., & Mora, F. (1976) Hypothalamic neuronal responses associated with the sight of food. Brain Research 111:53–66. [JLM]CrossRefGoogle ScholarPubMed
Rolls, E. T., Roper-Hall, A., & Sanghera, M. K. (1977) Activity of neurons in the substantia innominata and lateral hypothalamus during the initiation of feeding in the monkey. Journal of Physiology (London) 272:24. [JLM]Google ScholarPubMed
Rolls, E. T., Sanghera, M. K., & Roper-Hall, A. (1979) The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Research 164:121–135. [JLM]CrossRefGoogle ScholarPubMed
Ross, C. W. (1938) Anorexia nervosa with special reference to the carbohydrate metabolism. Lancet 1:1041–1045. [RCC]CrossRefGoogle Scholar
Rothwell, N.J., & Stock, M. J. (1979a) A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35. [KTB, BJC, JLM]CrossRefGoogle ScholarPubMed
Rothwell, N.J., & Stock, M. J. (1979b) Regulation of energy balance in two models of reversible obesity in the rat. Journal of Comparative and Physiological Psychology 93:1024–1036. [KTB]CrossRefGoogle ScholarPubMed
Rowland, N. (1977) Fragmented behavior sequences in rats with lateral hypothalamic lesions: nature of residual deficits analyzed by NaCl and water infusions. Journal of Comparative and Physiological Psychology 91:1039–1055. [JLM]CrossRefGoogle Scholar
Rowland, N. (1978) Effects of insulin and 2-deoxy-D-glucose on feeding in hamsters and gerbils. Physiology and Behavior 21:291–294. [NR]CrossRefGoogle ScholarPubMed
Rowland, N. (1981) Energy regulation - comparative aspects. Paper presented at Eastern Psychological Association Meeting, New York, 04. [NR]Google Scholar
Rowland, N., & Engle, D. J. (1978) Hypothalamic hyperphagia prevented by prior subdiaphragmatic vagotomy: insulin hyperphagia is unaffected. Physiology and Behavior 21(5):685–690. [JLM]CrossRefGoogle ScholarPubMed
Rowland, N., Marshall, J. F., Anterlman, S. M., & Edwards, D. J. (1979) Hypothalamic hyperphagia prevented by damage to brain dopamine containing neurons. Physiology and Behavior 22:635–640. [JP]CrossRefGoogle ScholarPubMed
Rowland, N., Meile, M. J., & Nicolaidis, S. (1973) Action inadéquate des apports parentéraux sur l'insulinosécrétion et sur le contrôle du comportement alimentaire chez le rat. Comptes rendus de l'Académic des Sciences 277:587–590. [JLM]Google Scholar
Rowland, N., & Nicolaidis, S. (1976) Metering of fluid intake and determinants of ad libitum drinking in rate. American Journal of Physiology 231:1–8. [FMT]CrossRefGoogle Scholar
Rowland, N., & Stricker, E. M. (1979) Differential effects of glucose and fructose infusions on insulin-induced feeding in rats. Physiology and Behavior 22:387–389. [NR]CrossRefGoogle ScholarPubMed
Rusak, B., & Zucker, I. (1979) Neural regulation of circadian rhythms. Physiological Reviews 59:449–526. [SA, AAN]CrossRefGoogle ScholarPubMed
Sanderson, J. D., & VanderWeele, D. A. (1975) Analysis of feeding patterns in normal and vagotomized rabbits. Physiology and Behavior 15(3):357–364. [JLM]CrossRefGoogle ScholarPubMed
Sandrew, B. B., & Mayer, J. (1973) Hyperphagia induced by intrahypothalamic implants of mercurithioglucose. Physiology and Behavior 10(6):1061–1066. [JLM]CrossRefGoogle Scholar
Sawchenko, P. E., Gold, R. M., & Alexander, J. (1981) Effects of selective vagotomies on knife cut-induced hypothalamic obesity: differential results on lab chow vs. high-fat diets. Physiology and Behavior 26:293–300. [BMK]CrossRefGoogle Scholar
Schlemmer, R. F. Jr, Casper, R. C., Narasimhachari, N., & Davis, J. M. (1979) Clonidine induced hyperphagia and weight gain in monkeys. Psychopharmacology 61:233–234. [RCC]CrossRefGoogle ScholarPubMed
Schlemmer, R. F. Jr, Casper, R. C., Elder, J. K., & Davis, J. M. (in press) Hyperphagia and weight gain in monkeys treated with clonidine. In: Psychopharmacology of Clonidine, ed. Lal, H. & Fielding, S.. New York: Alan Liss. [RCC]Google Scholar
Schlierf, G., & Dorow, E. (1973) Diurnal patterns of triglycerides, free fatty acids, blood sugar and insulin during carbohydrate induction in man and their modification by nocturnal suppression of lipolysis. Journal of Clinical Investigation 52(3):732–750. [JLM]CrossRefGoogle ScholarPubMed
Schwartz, W. J., & Gainer, H. (1977) Suprachiasmatic nucleus: use of 14C-labelled deoxyglucose uptake as a functional marker. Science 197:1089–1091. [SA]CrossRefGoogle Scholar
Sclafani, A., Aravich, P. F., & Landman, M. (1981) Vagotomy blocks hypothalamic hyperphagia on a chow diet and sucrose solution, but not on a mixed palatable diet. Journal of Comparative and Physiological Psychology, in press. [AS]CrossRefGoogle ScholarPubMed
Sclafani, A., & Berner, C. N. (1977) Hyperphagia and obesity produced by parasagittal and coronal hypothalamic knife cuts: Further evidence for a longitudinal feeding inhibitory pathway. Journal of Comparative and Physiological Psychology 91:1000–1018. [AS]CrossRefGoogle ScholarPubMed
Sclafani, A., Gale, S. K. & Springer, D. (1975) Effects of hypothalamic knife cuts on the ingestive responses to glucose and insulin. Physiology and Behavior 15(1):63–70. [JLM]CrossRefGoogle ScholarPubMed
Sclafani, A., & Xenakis, S. (1981) Atropine fails to block the overconsumption of sugar solutions by hypothalamic hyperphagic rats. Journal of Comparative and Physiological Psychology, in press. [AS]CrossRefGoogle ScholarPubMed
Scott, J. W., & Leonard, C. M. (1971) The olfactory connections of the lateral hypothalamus in the rat, mouse and hamster. Journal of Comparative Neurology 141(3):331–344. [JLM]CrossRefGoogle ScholarPubMed
Scott, J. W., & Pfaffman, C. (1972) Characteristics of responses of lateral hypothalamic neurons to stimulation of the olfactory system. Brain Research 48:251–264. [JLM]CrossRefGoogle ScholarPubMed
Sensi, S., & Capani, F. (1976) Circadian rhythm of insulin-induced hypoglycemia in man. Journal of Clinical Endocrinology and Metabolism 43:462–465. [JLM]CrossRefGoogle ScholarPubMed
Sensi, S., Capani, F., Caradonna, P., & Dell'Acqua, G. B. (1973) Circadian rhythm of immuno-reactive insulin under glycemic stimulus. Journal of Interdisciplinary Cycle Research 4:1–13. [JLM]CrossRefGoogle Scholar
Sherry, D. F., Mrosovsky, N., & Hogan, J. A. (1980) Weight loss and anorexia during incubation in birds. Journal of Comparative and Physiological Psychology 94(1):89–98. [JLM]CrossRefGoogle Scholar
Shimazu, T. (1971) Regulation of glycogen metabolism in liver by the autonomic nervous system: V. Activation of glycogen synthetase by vagal stimulation. Biochemical Biophysica Acta 252:28–38. [KTB]CrossRefGoogle ScholarPubMed
Shimazu, T. (1979) Hypothalamic regulation of circadian rhythm of liver glycogen metabolism. In: Biological rhythms and their central mechanism, ed. Suda, M., Hayaishi, D., & Nakagawa, H., pp. 309–318. Amsterdam: Elsevier/North-Holland. [KTB]Google Scholar
Shimazu, T. & Amakawa, A. (1968) Regulation of glycogen metabolism in liver by the autonomic nervous system: II. Neural control of glycogenolytic enzymes. Biochemica Biophysica Acta 165:335–348. [KTB]CrossRefGoogle ScholarPubMed
Shimazu, T., Matsushita, H., & Ishikawa, K. (1976) Cholinergic stimulation of the rat hypothalamus: effects of liver glycogen synthesis. Science 194:535–536. [KTB]CrossRefGoogle ScholarPubMed
Shimazu, T., & Ogasawara, S. (1975) Effects of hypothalamic stimulation on gluconeogenesis and glycolysis in rat liver. American Journal of Physiology 228:1787–1793. [KTB]CrossRefGoogle ScholarPubMed
Shimazu, T. & Takahashi, A. (1980) Stimulation of hypothalamic nuclei has different effects on lipid synthesis in brown and white adipose tissue. Nature 284:62–63. [KTB]CrossRefGoogle Scholar
Silverman, H. J., & Zucker, I. (1976) Absence of post-fast food compensation in the golden hamster (mesocricetus auratus). Physiology and Behavior 17:271–285. [NR]CrossRefGoogle ScholarPubMed
Smith, A. L., Satterthwaite, H. S., & Sokoloff, L. (1969) Induction of brain D(-)-B-hydroxybutyrate dehydrogenase activity by fasting. Science 163(3862):79–81. [JLM]CrossRefGoogle Scholar
Smith, C. J. V. (1972) Hypothalamic glucoreceptors: the influence of gold thioglucose implants in the ventromedial and lateral hypothalamic areas in normal and diabetic rats. Physiology and Behavior 9:391–396. [JLM]CrossRefGoogle ScholarPubMed
Smith, C. J. V., & Britt, D. L. (1971) Obesity in the rat induced by hypothalamic implants of gold thioglucose. Physiology and Behavior 7(1):7–10. [JLM]CrossRefGoogle ScholarPubMed
Smith, M., & Duffy, M. (1955) The effects of intragastric injections of various substances on subsequent bar-pressing. Journal of Comparative and Physiological Psychology 48:387–391. [JLM]CrossRefGoogle ScholarPubMed
Snowdon, C. T. (1970) Gastrointestinal sensory and motor control of food intake. Journal of Comparative and Physiological Psychology 71:68–76. [SA]CrossRefGoogle ScholarPubMed
Snowdon, C. T., & Epstein, A. N. (1970) Oral and intragastric feeding in vagotomized rats. Journal of Comparative and Physiological Psychology 71:59–67. [SA]CrossRefGoogle ScholarPubMed
Sokoloff, L. (1977) Relation between physiological function and energy metabolism in the central nervous system. Journal of Neurochemistry 29:13–26. [JLM]CrossRefGoogle ScholarPubMed
Solomon, J., & Mayer, J. (1977) The effect of adrenalectomy on the development of the obese hyperglycemic syndrome in ob/ob mice. Hormone and Metabolic Research 9:152–156. [JLM]CrossRefGoogle Scholar
Spirovski, M., Kovacev, V., Spasovska, M., & Chernick, S. (1975) Effect of ACTH on lipolysis in adipose tissue of normal and adrenalectomized rats in vivo. American Journal of Physiology 228:382–385. [LLB]CrossRefGoogle ScholarPubMed
Steffans, A. B. (1969) The influence of insulin injections and infusions on eating and blood glucose in the rat. Physiology and Behavior 4:823–828. [MIF, NR]CrossRefGoogle Scholar
Steffans, A. B. (1970) Plasma insulin content in relation to blood glucose level and meal pattern in the normal hypothalamic hyperphagic rat. Physiology and Behavior 5:147–151. [JLM]CrossRefGoogle Scholar
Steffans, A. B. (1975) The influence of reversible obesity on eating behavior, blood glucose, and insulin in the rat. American Journal of Physiology 228:1738–44. [JLM]CrossRefGoogle Scholar
Steffens, A. B., Mogenson, G. J., & Stevenson, J. A. F. (1972) Blood glucose, insulin and free fatty acids after stimulation and lesions of the hypothalamus. American Journal of Physiology 222(6): 1446–1452. [JLM]CrossRefGoogle ScholarPubMed
Steinbaum, E. A., & Miller, N. E. (1965) Obesity from eating elicited by daily electrical stimulation of hypothalamus. American Journal of Physiology 208:1–5. [JLM]CrossRefGoogle ScholarPubMed
Stephan, F. K., & Nunez, A. A. (1977) Elimination of circadian rhythms in drinking, activity, sleep and temperature by isolation of the suprachiasmatic nuclei. Behavioral Biology 20:1–16. [AAN]CrossRefGoogle ScholarPubMed
Stevenson, J. A. F., Feleki, V., Szlavko, A. & Beaton, J. R. (1964) Food restriction and lipogenesis in the rat. Proceedings of the Society for Experimental Biology and Medicine 116:178–182. [RJW]CrossRefGoogle ScholarPubMed
Stricker, E. M. (1978) Hyperphagia. New England Journal of Medicine 298:1010–1013. [EMS]CrossRefGoogle ScholarPubMed
Stricker, E. M., Cooper, P. H., Marshall, J. F., & Zigmond, M. J. (1979) Acute homeostatic imbalances reinstate sensorimotor dysfunctions in rats with lateral hypothalamic lesions. Journal of Comparative and Physiological Psychology 93:512–521. [EMS]CrossRefGoogle ScholarPubMed
Strieker, E. M., Friedman, M. I., & Zigmond, M. J. (1975) Glucoregulatory feeding by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science 189:895–897. [MIF, EMS]CrossRefGoogle Scholar
Strieker, E. M., & Rowland, N. (1978) Hepatic versus cerebral origin of stimulus for feeding induced by 2-deoxy-D-glucose in rats. Journal of Comparative and Physiological Psychology 92:126–132. [NR]CrossRefGoogle Scholar
Strieker, E. M., Rowland, N., Sailer, C. F., & Friedman, M. I. (1977) Homeostasis during hypoglycemia: central control of adrenal secretion and peripheral control of feeding. Science 196:79–81. [MIF, NR]CrossRefGoogle Scholar
Strieker, E. M., & Zigmond, M. J. (1976) Recovery of function following damage to central catecholamine-containing neurons: A neurochemical model for the lateral hypothalamic syndrome. In: Progress in psychobiology and physiological psychology, ed. Sprague, J. M. & Epstein, A. N., pp. 121–188. New York: Academic Press. [KTB, MIF, EMS]Google Scholar
Strubbe, J. H., & Steffens, A. B. (1975) Rapid insulin release after ingestion of a meal in the unanesthetized rat. American Journal of Physiology 229:1019–1022. [NR]CrossRefGoogle ScholarPubMed
Strubbe, J. H., & Steffens, A. B. (1977) Blood glucose levels in portal and peripheral circulation and their relation to food intake in the rat. Physiology and Behavior 19(2):303–308. [JLM]CrossRefGoogle ScholarPubMed
Strubbe, J. H., Steffens, A. B., & De Ruiter, L. (1977) Plasma insulin and the time pattern of feeding in the rat. Physiology and Behavior 18:81–86. [JLM]CrossRefGoogle ScholarPubMed
Swanson, L. W., & Cowan, W. M. (1975) The efferent connections of the suprachiasmatic nucleus of the hypothalamus. Journal of Comparative Neurology 160:1–12. [SA]CrossRefGoogle ScholarPubMed
Teitelbaum, P. (1971) The encephalization of hunger. In: Progress in Physiological Psychology ed. Stellar, E. & Sprague, J. M., 4:319–350. [KTB]Google Scholar
Teixeira, V. L., Antunes-Rodriguez, J. & Migliorini, R. H. (1973) Evidence for centers in the central nervous system that selectively regulate fat mobilization in the rat. Journal of Lipids Research 14:672–677. [JLM]CrossRefGoogle ScholarPubMed
Tenen, S. S., & Miller, N. E. (1964) Strength of electrical stimulation of lateral hypothalamus, food deprivation and tolerance for quinine in food. Journal of Comparative and Physiological Psychology 58(1):55–62. [JLM]CrossRefGoogle ScholarPubMed
Tepperman, J., Tepperman, H. M., & Schulman, M. P. (1956) Oxidation of palamitic acid-l-C14 by tissue of carbohydrate and fat diet adapted rats. American Journal of Physiology 184:80–82. [RJW]CrossRefGoogle Scholar
Thomas, D. W., & Mayer, J. (1968) Meal taking and regulation of food intake by normal and hypothalamic hyperphagic rats. Journal of Comparative and Physiological Psychology 66:642–653. [JLM]CrossRefGoogle ScholarPubMed
Toates, F. M. (1979) Homeostasis and drinking. Behavioral and Brain Sciences 2:95–139. [JDD, RBK, FMT]CrossRefGoogle Scholar
Toates, F. M. (1981) The control of ingestive behaviour by internal and external stimuli -a theoretical review. Appetite 2:35–50. [FMT]CrossRefGoogle ScholarPubMed
Toivola, P., Gale, C., Goodner, C., & Werbach, T. (1972) Central adrenergic regulation of growth hormone and insulin. Hormone Research 3:193–213. [KTB]CrossRefGoogle ScholarPubMed
Van den Pol, A. N., & Powley, T. (1979) A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking. Brain Research 160:307–326. [AAN, AS]CrossRefGoogle ScholarPubMed
Van Houten, M., Posner, B. I., Kopriwa, B. M., & Brawer, J. R. (1979) Insulinbinding sites in the rat brain: in vivo localization to the circumventricular organs by quantitative radioautography. Endocrinology 105:666–673. [JLM]CrossRefGoogle Scholar
Vasselli, J. R., & Sclafani, (1979) Hyperreactivity to aversive diets in rats produced by injections of insulin or Tolbutamide, but not by food deprivation. Physiology and Behavior 23:557–567. [RBK]CrossRefGoogle Scholar
Vilberg, T. R., & Beatty, W. W. (1975) Behavioral changes following VMH lesions in rats with controlled insulin levels. Pharmacology, Biochemistry and Behavior 3:377–384. [BMK, JP]CrossRefGoogle ScholarPubMed
Wachslicht-Rodbard, H., Gross, H. A., Rodbard, D., Ebert, M. M., & Roth, J. (1979) Increased insulin binding to erythrocytes in anorexia nervosa. New England Journal of Medicine 30:882–887. [RCC]CrossRefGoogle Scholar
Wampler, R. S., & Snowdon, C. T. (1979) Development of VMH obesity in vagotomized rats. Physiology and Behavior 22(1):85–94. [JLM]CrossRefGoogle ScholarPubMed
Wayner, M. J., Cott, A., Millner, J., & Tartaglione, R. (1971) Loss of 2-deoxy-D-glucose induced eating in recovered lateral rats. Physiology and Behavior 7:881–884. [RBK, JLM]CrossRefGoogle ScholarPubMed
Weiley, J. H. & Leveille, G. A. (1970) Significance of insulin in the metabolic adaptation of rats to meal ingestion. Journal of Nutrition 100:1073–1080. [RJW]CrossRefGoogle Scholar
Wiepkema, P. R. (1966) Auro-thioglucose sensitivity of CBA mice injected at two different times of day. Nature 209:937. [JLM]CrossRefGoogle Scholar
Williams, R. A., & Campbell, B. A. (1961) Weight loss and quinine-milk ingestion as measures of “hunger” in infant and adult rats. Journal of Comparative and Physiological Psychology 54:220–222. [JLM]CrossRefGoogle ScholarPubMed
Willoughby, J. O., Terry, L. C., Brazeau, P., & Martin, J. B. (1977) Pulsatile growth hormone prolactin, and thyrotropin secretion in rats with hypothalamic deafferentation. Brain Research 127:137–152. [KTB]CrossRefGoogle ScholarPubMed
Wilson, M. & Critchlow, V. (1973/1974) Effect of fornix transection or hippocampectomy on rhythmic pituitary-adrenal function in the rat. Neuroendocrinology 13:29–40. [KTB]CrossRefGoogle ScholarPubMed
Wilson, W. H., & Heller, H. C. (1975) Elevated blood glucose levels and satiety in the rat. Physiology and Behavior 15:137–143. [JDD]CrossRefGoogle ScholarPubMed
Wolf, L. L., & Hainsworth, F. R. (1977) Temporal patterning of feeding by humming birds. Animal Behavior 25(4):976–989. [JLM]CrossRefGoogle Scholar
Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D. (1979) Chronic intracerebro-infusion of insulin reduces food intake and body weight of baboons. Nature 282:503–505. [JLM]CrossRefGoogle ScholarPubMed
Wood, S. C., Vasselli, J. R., Kaestner, E., Szakmary, G. A., Milburn, P., & Vitiello, M. V. (1977) Conditioned insulin secretion and meal feeding in rats. Journal of Comparative and Physiological Psychology 91(1):128–133. [JLM]CrossRefGoogle Scholar
York, D. A., & Bray, G. A. (1972) Dependence of hypothalamic obesity on insulin, the pituitary and the adrenal gland. Endocrinology 90:885–894. [JLM, IP]CrossRefGoogle ScholarPubMed
York, D. A., Bray, G. A., & Yukimura, Y. (1978) An enzymatic defect in the obese (ob/ob) mouse: loss of thyroid-induced sodium- and potassium-dependent adenosinetriphosphatase. Proceedings of the National Academy of Science, U.S.A. 75:477–481. [BJC]CrossRefGoogle ScholarPubMed
Young, T. K., & Liu, A. C. (1965) Hyperphagia, insulin and obesity. Chinese Journal of Physiology 19:247–253. [BMK, JP]Google Scholar
Zucker, I., & Stephan, F. K. (1973) Light-dark rhythms in hamster eating, drinking and locomotor behaviors. Physiology and Behavior 11:239–250. [NR]CrossRefGoogle ScholarPubMed