No CrossRef data available.
Article contents
Is perception isomorphic with neural activity?
Published online by Cambridge University Press: 04 February 2010
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © Cambridge University Press 1994
References
Abrams, R. A. & Langraf, J. Z. (1990) Differential use of distance and location information for spatial localization. Perception & Psychophysics 47:349–59. [PD]Google Scholar
Allport, D. A. (1987) Selection for action: Some behavioral and neurophysiological considerations of attention and action. In: Perspectives on perception and action, ed. Heuer, H. & Sanders, A. F.. Erlbaum. [aBB]Google Scholar
Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. (1990) Eye position effects on visual, memory, and saccade-related activities in areas LIP and 7a of macaque. Journal of Neuroscience 10:1176–96. [JTE, CP]Google Scholar
Andersen, R. A., Essick, G. K. & Siegel, R. M. (1985) The encoding of spatial location by posterior parietal neurons. Science 230:456–58. [aBB]Google Scholar
Andersen, R. A. & Zipser, D. (1988) The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Canadian Journal of Physiology and Pharmacology 66:488–501. [AP]Google Scholar
Aubert, H. (1888) Purkinje's Mitteilungen über Scheinbewegungen und über den Schwindel aus den Bulletins der Schlesischen Gesellschaft von 1825 und 1826. In: Physiologische Stttdien über die Orientierung. Laupp. [O-JG]Google Scholar
Bahill, A. T., Brockenbrough, A. & Troost, B. T. (1981) Variability and development of a normative data base for saccadic eye movements. Investigative Ophthalmology 21:116–25. [LRH]Google ScholarPubMed
Ballard, D. H. & Brown, C. M. (1992) Principles of animate vision. Computer Vision, Graphics and Image Processing 56:3–21. [APP]Google Scholar
Barash, S., Bracewell, R. M., Fogassi, L., Gnadt, J. W. & Anderson, R. A. (1991) Saccade-related activity in the lateral intraparietal area: Spatial properties. Journal of Neurophysiology 66:1109–24. [JTE]Google Scholar
Bell, C. (1823) On the; motions of the eye, and illustrations of the uses of muscles and nerves of the orbit. Philosophical Transactions of the Royal Society (London) 113:166–68. [O-JG]Google Scholar
Berthoz, A. (1991) Reference frames for the perception and control of movement. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]Google Scholar
Bischof, N. & Kramer, E. (1968) Untersuchungen und überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen. Psychologische Forschung 32:185–218. [arBB]Google Scholar
Blouin, J., Bard, C., Teasdale, N., Paillard, J., Fleury, M., Forget, R. & LaMarre, Y. (1993) Reference systems for coding spatial information in normal subjects and a deafferented patient. Experimental Brain Research 93:324–31. [JP]CrossRefGoogle Scholar
Bock, O. (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Experimental Brain Research 64:476–82. [JBJS]CrossRefGoogle ScholarPubMed
Bonnet, C. (1977) Visual motion detection models: Feature and frequency. Perception 6:491–500. [JP]Google Scholar
Brandt, T., Dichgans, J. & Koenig, E. (1973) Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Experimental Brain Research 16:476–91. [LRH]Google Scholar
Breitmeyer, B. G. (1984) Visual masking: An interactive approach. Oxford University Press. [aBB]Google Scholar
Breitmeyer, B. G., Kropfl, W. & Julesz, B. (1982) The existence and role of retinotopic and spatiotopic forms of visual persistence. Acta Psychologica 52:175–96. [aBB]Google Scholar
Brenner, E. (1991) Judging object motion during smooth pursuit eye movements: The role of optic flow. Vision Research 31:1893–1902. [JBJS]Google Scholar
Brenner, E. & Smeets, J. B. J. (1993) Hitting a running spider on a moving background. Investigative Ophthalmology and Visual Science 34:706. [JBJS]Google Scholar
Bridgeman, B. (1977) Reply to Brooks and Fuchs: Exogenous and endogenous contributions to saccadic suppression. Vision Research 17:323–24. [rBB]Google Scholar
Bridgeman, B. (1981) Cognitive factors in subjective stabilization of the visual world. Acta Psychologica 48:111–21. [arBB]Google Scholar
Bridgeman, B. (1983) Mechanisms of space constancy. In: Spatially oriented behavior, ed. Hein, A. & Jeannerod, M.. Springer-Verlag. [arBB, HM]Google Scholar
Bridgeman, B. (1986) Multiple sources of outflow in processing spatial information. Acta Psychologica 63:35–48. [aBB]Google Scholar
Bridgeman, B. (1989) Separate visual representations for perception and for visually guided behavior. In: Spatial display and spatial instruments. NASA. [JP]Google Scholar
Bridgeman, B. (1991) Complementary cognitive and motor image processing. In: Presbyopia research: From molecular biology to visual adaptation, ed. Obrecht, G. & Stark, L. W.. Plenum Press. [rBB]Google Scholar
Bridgeman, B. (1992) Conscious vs. unconscious processes: The case of vision. Theory & Psychology 2:73–78. [aBB]Google Scholar
Bridgeman, B. & Fisher, B. (1990) Saccadic suppression of displacement is stronger in central vision. Perception 19:102–11. [rBB]Google Scholar
Bridgeman, B. & Graziano, J. A. (1989) Effect of context and efference copy on visual straight ahead. Vision Research 12:1729–36. [aBB]Google Scholar
Bridgeman, B., Hendry, D. & Stark, L. (1975) Failure to detect displacement of visual world during saccadic eye movements. Vision Research 15:719–22. [aBB, HD, JBJS]Google Scholar
Bridgeman, B., Kirch, M. & Sperling, A. (1981) Segregation of cognitive and motor aspects of visual function using induced motion. Perception & Psychophysics 29:336–42. [PD, JBJS]Google Scholar
Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. (1979) Relationship between cognitive and motor-oriented systems of visual position perception. Journal of Experimental Psychology: Human Perception and Performance 5:692–700. [rBB, PD]Google Scholar
Bridgeman, B. & Mayer, M. (1983) Failure to integrate visual information from successive fixations. Bulletin of the Psychonomic Society 21:285–86. [aBB]Google Scholar
Bridgeman, B. & Stark, L. (1979) Omnidirectional increase in threshold for image shifts during saccadic eye movements. Perception & Psychophysics 25:241–43. [rBB]Google Scholar
Bridgeman, B. & Stark, L. (1981) Efferent copy and visual detection. Investigative Ophthalmology and Visual Science 20:55. [aBB]Google Scholar
Bridgeman, B. & Stark, L. (1991) Ocular proprioception and efference copy in registering visual direction. Vision Research 31:1903–13. [arBB, PD, JTE, HM]CrossRefGoogle ScholarPubMed
Brooks, B. A. & Fuchs, A. (1975) The influence of stimulus parameters on visual sensitivity during saccadic eye movements. Vision Research 15:1389–98. [EC]Google Scholar
Brooks, R. A. (1991) Intelligence without reason. A. I. Memo No. 1293. Massachusetts Institute of Technology. [APP]Google Scholar
Brune, F. & Lücking, C. H. (1969) Okulomotorik, Bewegungswahrnehmung und Raumkonstanz der Sehdinge. Der Nervenarzt 40:692–700. [rBB]Google Scholar
Campbell, F. W. & Wurtz, R. H. (1978) Saccadic omission: Why we do not see a grey-out during saccadic eye movement. Vision Research 18:1297–1303. [EC, CP]Google Scholar
Chekaluk, E. & Llewellyn, K. R. (1990) Visual stimulus input, saccadic suppression, and detection of information from the postsaccade scene. Perception & Psychophysics 48:135–42. [EC]Google Scholar
Clancey, W. J. (1991) The frame of reference problem in the design of intelligent machines. In: Architectures for intelligence, ed. Van Lehn, K.. Erlbaum. [WLS]Google Scholar
Clark, M. R. & Stark, L. (1975) Time optimal behavior of human saccadic eye movements. IEEE Transactions on Automatic Control AC-20:345–48. [aBB]Google Scholar
Collewijn, H., Ferman, L. & van den Berg, A. V. (1988) The behavior of human gaze in three dimensions. Annals of the New York Academy of Sciences 545:105–27. [JBJS]Google Scholar
Collewijn, H., Steinman, R. & van der Steen, J. (1985) The performance of the smooth pursuit eye movement system during passive and self-generated stimulus motion. Journal of Physiology (London) 351:217–50. [aBB]Google Scholar
Coltheart, M. (1980) Iconic memory and visual persistence. Perception & Psychophysics 27:183–228. [aBB]CrossRefGoogle Scholar
Conti, P. & Beaubaton, D. (1980) Role of structured visual field and visual reafference in accuracy of pointing movements. Perceptual and Motor Skills 50:239–44. [PD]CrossRefGoogle ScholarPubMed
Darwin, E. (1794/1796) Zoonomia, or the laws of organic life, vol. 2. Johnson. (Reprint: AMS Press 1974.) [O-JG]Google Scholar
Dassonville, P., Schlag, J. & Schlag-Rey, M. (1992) Oculomotor localization relies on a damped representation of saccadic eye displacement in human and nonhuman primates. Visual Neuroscience 9:261–69. [PD, CP]Google Scholar
Dassonville, P., Schlag, J. & Schlag-Rey, M. (1993) Direction constancy in the oculomotor system. Current Directions in Psychological Science 2:143–47. [PD]Google Scholar
Davidson, M. L., Fox, M. J. & Dick, A. O. (1973) Effect of eye movements on backward masking and perceived location. Perception & Psychophysics 14:110–16. [aBB]Google Scholar
Dennett, D. C. & Kinsbourne, M. (1992) Time and the observer: The where and when of consciousness in the brain. Behavioral and Brain Sciences 15:183–201. [aBB]Google Scholar
Deubel, H. (1991) Adaptive control of saccade metrics. In: Presbyopia research, ed. Obrecht, G. & Stark, L. W.. Plenum Press. [HD]Google Scholar
Deubel, H., Wolf, W. & Hauske, G. (1984) The evaluation of the oculomotor error signal. In: Theoretical and applied aspects of eye movement research, ed. Gale, A. G. & Johnson, F.. Elsevier North Holland. [HD]Google Scholar
Dichgans, J., Held, H., Young, L. & Brandt, T. (1972) Moving visual scenes influence the apparent direction of gravity. Science 178:1217–19. [CP]CrossRefGoogle ScholarPubMed
Droulez, J. & Berthoz, A. (1990) The concept of dynamic memory in sensorimotor control. In: Disorders of posture and gait, ed. Bles, W. & Brandt, T.. Elsevier. [JF]Google Scholar
Duhamel, J.-H., Colby, C. L. & Goldberg, M. E. (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92. [arBB, JTE, CP, GWS, AT]Google Scholar
Enright, J. T. (1984) Changes in vergence mediated by saccades. Journal of Physiology (London) 350:9–31. [JTE]Google Scholar
Enright, J. T. (1988) The cyclopean eye and its implications: Vergence state and visual direction. Vision Research 28:925–30. [JTE]Google Scholar
Enright, J. T. (1992) The remarkable saccades of asymmetrical vergence. Vision Research 32:2261–76. [JTE]Google Scholar
Epstein, W. (1973) The process of “taking-into-account” in visual perception. Perception 2:267–85. [WLS]Google Scholar
Erkelens, C. J. & Collewijn, H. (1985) Motion perception during dichoptic viewing of moving random-dot stereograms. Vision Research 25:1689–1700. [JBJS]Google Scholar
Ettlinger, G. (1990) Object vision and spatial vision: The neuropsychological evidence for the distinction. Cortex 26:319–41. [aBB]Google Scholar
Feldman, J. A. (1985) Four frames suffice: A provisional model of vision and space. Behavioral and Brain Sciences 8:265–89. [aBB]CrossRefGoogle Scholar
Ferman, L., Collewijn, H., Jansen, T. C. & van den Berg, A. V. (1987) Human gaze stability in the horizontal, vertical and torsional direction during voluntary head movements, evaluated with a three-dimensional seleral induction coil technique. Vision Research 27:811–28. [JBJS]CrossRefGoogle Scholar
Fetz, E. (1992) Are movement parameters recognizably coded in the activity of single neurons? Behavioral and Brain Sciences 15:679–90. [aBB]Google Scholar
Fischer, B. & Weber, H. (1993) Express saccades and visual attention. Behavioral and Brain Sciences 16:553–610. [rBB]Google Scholar
Galleti, C. & Battaglini, P. (1989) Gaze-dependent visual neurons in area V3a of monkey prestriate cortex. Journal of Neuroscience 9:1112–25. [AP]Google Scholar
Gauthier, C., Nommay, P. & Vercher, J. (1988) Ocular muscle proprioception and visual localization in man. Journal of Physiology (London) 406:24. [aBB, HM]Google Scholar
Gibson, J. J. (1966) The senses considered as perceptual systems. Houghton Mifflin. [aBB, DAO, WLS]Google Scholar
Gibson, J. J. (1979) The ecological approach to visual perception. Houghton Mifflin. [aBB, DAO, WLS]Google Scholar
Gnadt, J. W. & Anderson, R. A. (1988) Memory related motor planning activity in posterior parietal cortex of macaque. Experimental Brain Research 70:216–20. [JTE]Google Scholar
Gogel, W. C. (1978) The adjacency principle in visual perception. Scientific American 238:126–39. [PD]Google Scholar
Goldman-Rakic, P. S., Funahashi, S. & Bruce, C. J. (1990) Neocortical memory circuits. Cold Spring Harbor Symposia in Quantitative Biology 55:1025–38. [JTE]Google Scholar
Goodale, M. A., Pélisson, D. & Prablanc, C. (1986) Large adjustments in visually guided reaching do not depend on vision of the hand or perception of target displacement. Nature 320:748–50. [CP]Google Scholar
Goodman, S. & Andersen, H. (1990) Algorithm programmed by a neural model for coordinate transformation. In: International Joint Conference on Neural Networks (IJCNN), San Diego. [AP]Google Scholar
Groh, J. M. & Sparks, D. L. (1992) Two models for transforming auditory signals from head-centered to eye-centered coordinates. Biological Cybernetics 67:291–302. [HM]Google Scholar
Grüsser, O.-J. (1986) Interaction of efferent and afferent signals in visual perception. A history of ideas and experimental paradigms. Acta Psychologica 63:3–21. [aBB, O-JG]CrossRefGoogle ScholarPubMed
Grüsser, O.-J. & Grüsser-Cornehls, U. (1969) Neurophysiologie des Bewegungssehens. Bewegungsempfindliche und richtungsspezifische Neurone im visuellen System. Reviews of Physiology, Biochemistry and Experimental Pharmacology 61:168–265. [O-JG]Google Scholar
Grüsser, O.-J. & Grüsser-Cornehls, U. (1973) Neuronal mechanisms of visual movement perception and some psychophysical and behavioral correlations. In: Handbook of sensory physiology, vol. 7 (3A), ed. Jung, R.. Springer. [aBB, O-JG]Google Scholar
Grüsser, O.-J., Krizič, A. & Weiss, L.-R. (1987) Afterimage movement during saccades in the dark. Vision Research 27:215–26. [aBB, JTE, O-JG]CrossRefGoogle ScholarPubMed
Gurfinkel, V. S. & Levick, Y. S. (1991) Perceptual and automatic aspects of the postural body scheme. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]Google Scholar
Haber, R. N. (1983) The impending demise of the icon: The role of iconic processes in information processing theories of perception. Behavioral and Brain Sciences 6:1–55. [aBB]Google Scholar
Hallett, P. E. & Lightstone, A. D. (1976) Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research 16:99–106. [PD, CP]CrossRefGoogle ScholarPubMed
Hansen, R. M. & Skavenski, A. A. (1977) Accuracy of eye-position information for motor control. Vision Research 17:919–26. [JBJS]Google Scholar
Hansen, R. M. & Skavenski, A. A. (1985) Accuracy of spatial localizations near the time of saccadic eye movements. Vision Research 25:1077–82. [aBB, PD]Google Scholar
Harris, L. R. & Jenkin, M. (1993) Spatial vision in humans and robots. In: Spatial vision in humans and robots, ed. Harris, L. R. & Jenkin, M.. Cambridge University Press. [LRH]Google Scholar
Haustein, W. & Mittelstaedt, H. (1990) Evaluation of retinal orientation and gaze direction in the perception of the vertical. Vision Research 30:255–65. [HM]Google Scholar
Hayhoe, M. M., Lachter, J. & Feldman, J. (1991) Integration of form across saccadic eye movements. Perception 20:393–402. [KSK]Google Scholar
Hayhoe, M. M., Lachter, J. & Møller, P. (1992) Spatial memory and integration across saccadic eye movements. In: Eye movements and visual cognition, ed. Rayner, K.. Springer-Verlag. [PD, KSK]Google Scholar
Hayhoe, M. M., Møller, P., Ballard, D. & Albano, J. E. (1990) Guidance of saccades to remembered targets and the precision of spatial position. Investigative Ophthalmology and Visual Science (Supplement) 31:603. [KSK]Google Scholar
Held, R. (1968) Dissociation of functions by deprivation and rearrangement. Psychologische Forschung 31:338–48. [aBB]Google Scholar
Henn, V. (1969) Materialien zur Vorgeschichte der Kybernetik. Studium Generale 22:164–90. [O-JG]Google Scholar
Hochberg, J. (1968) In the mind's eye. In: Contemporary theory and research in visual perception, ed. Haber, R. N.. Holt, Rinehart & Winston. [aBB]Google Scholar
Hochberg, J. (1970) Attention, organization and consciousness. In: Attention: Contemporary theory and analysis, ed. Mostofsky, D. I.. Appleton-Century-Crofts. [aBB]Google Scholar
Honda, H.(1990a) Eye movements to a visual stimulus flashed before, during or after a saccade. In: Attention and performance XIII: Motor representations and control, ed. Jeannerod, M.. Erlbaum. [PD, CP]Google Scholar
Honda, H.(1990b) The extraretinal signal from the pursuit-eye-movement system: Its role in the perceptual and the egocentric localization systems. Perception & Psychophysics 48:509–15. [aBB]Google Scholar
Honda, H. (1993) Saccade-contingent displacement of the apparent position of visual stimuli flashed on a dimly illuminated structured background. Vision Research 33:709–16. [SM]Google Scholar
Horster, W., Rivers, A., Schuster, B., Ettlinger, G., Skreczek, W. & Hesse, W. (1989) The neural structures involved in cross-modal recognition and tactile discrimination performance: An investigation using 2-DG. Behavioral Brain Research 3:209–27. [aBB]Google Scholar
Hubel, D. H. & Livingstone, M. S. (1987) Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7:3378–3415. [aBB]Google Scholar
Ilg, U. J., Bridgeman, B. & Hoffman, K. P. (1989) Influence of mechanical disturbance on oculomotor behavior. Vision Research 29:545–51. [aBB]Google Scholar
Irwin, D. E. (1991) Information integration across saccadic eye movements. Cognitive Psychology 23:420–56. [aBB, DEI]Google Scholar
Irwin, D. E.(1992a) Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition 18:307–17. [DEI]Google Scholar
Irwin, D. E.(1992b) Perceiving an integrated visual world. In: Attention and performance XIV: Synergies in experimental psychology, artificial intelligence, and cognitive neuroscience, ed. Meyer, D. E. & Kornblum, S.. MIT Press. [DEI, JKO]Google Scholar
Irwin, D. E.(1992c) Visual memory within and across fixations. In: Eye movements & visual cognition, ed. Rayner, K.. Springer-Verlag. [KSK]Google Scholar
Irwin, D. E., Brown, J. S. & Sun, J. S. (1988) Visual masking and visual integration across saccadic eye movements. Journal of Experimental Psychology: General 117:276–87. [aBB]Google Scholar
Irwin, D. E., Yantis, S. & Jonides, J. (1983) Evidence against visual integration across saccadic eye movements. Perception & Psychophysics 34:49–57. [aBB]Google Scholar
Irwin, D. E., Zacks, J. L. & Brown, J. S. (1990) Visual memory and the perception of a stable visual environment. Perception & Psychophysics 47:35–46. [aBB, AES, AT]CrossRefGoogle ScholarPubMed
Jaeger, W. (1976) Die Illustrationen von Peter Paul Rubens zum Lehrbuch der Optik des Franciscus Aguilonius 1613. Brausdruck. [O-JG]Google Scholar
Jami, L. (1992) Golgi tendon organs in mammalian skeletal muscle: Functional properties and central actions. Physiological Reviews 72:623–66. [PVD]Google Scholar
Jeannerod, M. (1988) The neural and behavioural organization of goal-directed movements. Clarendon Press. [JP]Google Scholar
Johansson, G. (1973) Visual perception of biological motion and a model for its analysis. Perception & Psychophysics 14:201–11. [DAO]CrossRefGoogle Scholar
Johansson, G. (1985) About visual event perception. In: Persistence and change: Proceedings of the First International Conference on Event Perception, ed. Warren, W. H. Jr., & Shaw, R. E.. Erlbaum. [DAO]Google Scholar
Jonides, J., Irwin, D. & Yantis, S. (1982) Integrating visual information from successive fixations. Science 215:192–94. [aBB]Google Scholar
Jüttner, M. (in preparation) Spatial, temporal and decision factors for transsaccadic information processing. [MJ]Google Scholar
Jüttner, M. & Röhler, R. (1993) Lateral information transfer across saccadic eye movements. Perception & Psychophysics 53:210–20. [MJ]Google Scholar
Kaas, J. H. (1987) The organization of neocortex in mammals: Implications for theories of brain function. Annual Review of Psychology 38:129–51. [aBB]Google Scholar
Karn, K. S., Møller, P. & Hayhoe, M. M. (1993) Precision of the eye position signal. In: Perception and cognition: Advances in eye movement research. Vol. 4: Studies in visual information processing, ed. d'Ydewalle, G. & Van Rensbergen, J.. Elsevier Science. [KSK]Google Scholar
Keller, E. L. (1974) Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology 37:316–32. [JTE]Google Scholar
Kinsbourne, M. (1987) The material basis of mind. In: Matters of intelligence, ed. Vaina, L. M.. D. Reidel. [aBB]Google Scholar
Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: Towards the underlying neural circuitry. Human Neurobiology 4:219–27. [aBB]Google Scholar
Koenderink, J. J. (1990) Some theoretical aspects of optic flow. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [WLS]Google Scholar
Kohler, I. (1951) Über Aufbau und Wandlungen der Wahrnehmungswelt. Österreichische Akademie der Wissenschaften, Sitzungsberichte, philosophisch-historische Klasse 227:1–118. [JKO]Google Scholar
Kolers, P. A. (1964) The illusion of movement. Scientific American 211(4):98–106. [AES]Google Scholar
Kornheiser, A. S. (1976) Adaptation to laterally displaced vision: A review. Psychological Bulletin 83:783–816. [JP]CrossRefGoogle ScholarPubMed
Lachter, J., Hayhoe, M. & Feldman, J. (1991) Capacity limitations in the integration of information across saccades. Investigative Ophthalmology and Visual Science (Supplement) 32:1025. [KSK]Google Scholar
Lal, R. & Friedlander, M. (1989) Gating of retinal transmission by afferent eye position and movement signals. Science 243:93–96. [AP]Google Scholar
Lehmkuhle, S. & Baro, J. (1991) The influence of eye position on the responses of x and y cells in the dorsal lateral geniculate nucleus of the awake behaving cat. In: Society for Neuroscience Abstract 17:629. [AP]Google Scholar
Lemij, H. G. & Collewijn, H. (1989) Differences in accuracy of human saccades between stationary and jumping targets. Vision Research 29:1737–48. [JBJS]CrossRefGoogle ScholarPubMed
Lincke, F. (1879) Das mechanische Relais. Verein Deutscher Ingenieure-Zeitschrift 23:509–24;577–616. (Reprinted as a book, Gaertner 1880.) [O-JG]Google Scholar
Livingstone, M. & Hubel, C. (1988) Segregation of form, color, movement and depth: Anatomy, physiology, and perception. Science 240:740–49. [aBB]Google Scholar
Lockhart, R. S. & Craik, F. I. M. (1990) Levels of processing: A retrospective commentary on a framework for memory research. Canadian Journal of Psychology 44:87–112. [rBB]Google Scholar
Ludvigh, E. (1952a) Control of ocular movements and visual interpretation of environment. A. M. A. Archives of Ophthalmology, 48:442–48. [HM]Google Scholar
Ludvigh, E. (1952b) Possible role of proprioception in the extraocular muscles. A. M. A. Archives of Ophthalmology 48:436–41. [HM]Google Scholar
Mach, E. (1906) Die Analyse der Empfindungen und das Verhältnis des Physischen zum Psychischen, 5th ed.Fischer. [O-JG]Google Scholar
Mack, A. (1970) An investigation of the relationship between eye and retinal image movement in the perception of movement. Perception & Psychophysics 8:291–98. [aBB]Google Scholar
MacKay, D. M. (1958) Perceptual stability of a stroboscopically lit visual field containing self-luminant objects. Nature (London) 181:506–8. [JTE]Google Scholar
MacKay, D. M. (1962) Theoretical models of space perception. In: Aspects of the theory of artificial intelligence, ed. Muses, C. A.. Plenum Press. [aBB]Google Scholar
MacKay, D. M. (1973) Visual stability and voluntary eye movements. In: Handbook of sensory physiology, vol. 7 (3), ed. Jung, R.. Springer. [arBB, JTE, DEI, JKO, CP, PVD]Google Scholar
MacKay, D. M. & Mittelstaedt, H. (1974) Visual stability and motor control (reafference revisited). In: Kybernetik und Bionik, ed. Keidel, W. D., Händler, W. & Spreng, M.. Oldenbourg. [MJ]Google Scholar
Mandriota, F. J., Mintz, D. E. & Notterman, J. M. (1962) Visual velocity discrimination: Effects of spatial and temporal cues. Science 138:437–38. [DNR]Google Scholar
Marr, D. (1982) Vision: A computational investigation into the human representation and processing of visual information. W. H. Freeman. [DAO]Google Scholar
Mateeff, S. (1978) Saccadic eye movements and localization of visual stimuli. Perception & Psychophysics 24:215–24. [SM]Google Scholar
Mateeff, S. & Hohnsbein, J. (1989) The role of the adjacency between background cues and objects in visual localization during ocular pursuit. Perception 18:93–104. [PD]Google Scholar
Matin, L. (1972) Eye movements and perceived visual direction. In: Handbook of sensory physiology, vol. 7 (4), ed. Jameson, D. & Hurvitch, L.. Springer. [aBB, PD]Google Scholar
Matin, L. (1976) Saccades and extraretinal signal for visual direction. In: Eye movements and psychological processes, ed. Monty, R. A. & Senders, J. W.. Erlbaum. [aBB]Google Scholar
Matin, L. & Li, W. (1992) Light and dark adaptation of egocentric spatial location. Investigative Ophthalmology and Visual Science (Supplement) 33:959. [KSK]Google Scholar
Matin, L., Picoult, E., Stevens, J. R., Edwards, M., Young, D. & MacArthur, R. (1982) Oculoparalytic illusion: Visual-field dependent spatial mislocalizations by humans partially paralyzed with curare. Science 216:198–201. [aBB, JP]Google Scholar
Maturana, H. R. (1983) What is it to see? Archivos de Biologia y Medicina Experimentales 16:255–69. [WLS]Google Scholar
Maunsell, J. H. R. & Gibson, J. R. (1992) Visual response latencies in striate cortex of the macaque monkey. journal of Neurophysiology 68:1332–44. [aBB]Google Scholar
McConkie, G. W. (1991) Perceiving a stable visual world. In: Proceedings of the sixth European conference on eye movements, ed. Van Rensbergen, J., Devijver, M. & d'Ydewalle, G.. Laboratory of Experimental Psychology, University of Leuven, Belgium. [DEI]Google Scholar
Melzack, R. (1990) Phantom limbs and the concept of a nouromatrix. Trends in Neurosciences 13:88–92. ]JP]Google Scholar
Merigan, W. H. & Maunsell, J. H. B. (1993) How parallel are primate visual pathways? Animal Review of Neurosciences 16:369–402. [rBB]Google Scholar
Miller, G. A. (1956) The magic number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review 63:81–97. [KSK]Google Scholar
Miller, J. M. (in press) Egocentric localization of a perisaccadic flash by manual pointing. Vision Research. [PD]Google Scholar
Milner, A. D. & Goodale, M. A. (1993) Visual pathways to perception and action. In: The visually responsive neuron: From basic neurophysiology to behavior, ed. Hicks, T. P., Molotehnikoff, S. & Ono, T.. Elsevier. (Progress in Brain Research 95:317–37.) [arBB]Google Scholar
Mishkin, M., Ungerleider, L. G. & Macko, K. A. (1983) Object vision and spatial vision: Two cortical pathways? Trends in Neurosciences 6:414–17. [arBB]CrossRefGoogle Scholar
Mittelstaedt, H. (1960) The analysis of behavior in terms of control systems. In: Group processes; Transactions of the Fifth Conference (Conference held October, 1958, sponsored by The Josiah Macy, Jr. Foundation), ed. B. Schaffner. Josiah Macy, Jr. Foundation. [HM]Google Scholar
Mittelstaedt, H. (1971) Reafferenzprinzip – Apologie und Kritik. In: Vorträge der crlangener Physiologentagung 1970, ed. Kreidel, W. D. & Platig, K. H.. Springer. [aBB, PVD]Google Scholar
Mittelstaedt, H. (1990) Basic solutions to the problem of head-centric visual localization. In: Perception and control of self-motion, ed. Warren, R. & Wertheim, A. H.. Erlbaum. [HM, PVD]Google Scholar
Mittelstaedt, H. & Eggert, T. (1989) How to transform topographically ordered spatial information into motor commands. In: Visuomotor coordination: Amphibians, comparisons, models, and robots, ed. Arbib, M. A. & Ewert, J.-P.. Plenum Press. [HM]Google Scholar
Møller, P., Hayhoe, M., Ballard, D. & Albano, J. E. (1989) Spatial memory and the accuracy of saccades to remembered visual targets. Investigative Ophthalmology and Visual Science (Supplement) 30:456. [KSK]Google Scholar
Morgan, C. L. (1978) Constancy of egocentric visual direction. Perception & Psychophysics 23:61–68. [aBB]Google Scholar
Munoz, D. P., Guitton, D. & Péllison, D. (1991) Control of orienting gaze-shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharge. Journal of Neurophysiology 66:1642–66. [AT]Google Scholar
Nagle, M., Bridgeman, B. & Stark, L. (1980) Voluntary nystagmus, saccadic suppression and stabilization of the visual world. Vision Research 20:717–21. [rBB]Google Scholar
Nakayama, K. (1979) Biological image motion processing: A review. Vision Research 25:625–60. [LRH]Google Scholar
Nelson, M. E. & Bower, J. M. (1990) Brain maps and parallel computers. Trends in Ncuroscienccs 13:403–8. [PVD]CrossRefGoogle ScholarPubMed
Notterman, J. M., Cicala, C. A. & Page, D. E. (1960) Demonstration of the influence of stimulus and response categories upon difference limens. Science 131:983–84. [DNH]Google Scholar
O'Regan, J. K. (1992) Solving the “real” mysteries of visual perception: The world as an outside memory. Canadian Journal of Psychology 46:461–88. [KSK, JKO]Google Scholar
Owens, D. A. (1987) Oculomotor information and perception of three-dimensional space. In: Perspectives on perception and action, ed. Heuer, H. & Sanders, A. F.. Erlbaum. [DAO]Google Scholar
Owens, O. A., Hahn, J. P., Francis, E. L. & Wist, E. R. (1990) Binocular vergence and perceived object velocity: A new illusion. Investigative Ophthalmology & Visual Science (Supplement) 31:93. [DAO]Google Scholar
OwensD, A. D, A. & Leibowitz, H. W. (1980) Accommodation, convergence, and distance perception in low illumination. American Journal of Optometry & Physiological Optics 57:540–50. [DAO]Google Scholar
Paillard, J. (1987) Cognitive versus sensorimotor encoding of spatial information. In: Cognitive processes and spatial orientation in animal and man, ed. Ellen, P. & Thinus-Blanc, C.. Martinus Nijhoff. [aBB]Google Scholar
Paillard, J. (1991) Motor and representational framing of space. In: Brain and space, ed. Paillard, J.. Oxford University Press. [JP]Google Scholar
Paillard, J. & Amblard, B. (1985) Static versus kinetic visual cues for the processing of spatial relationships. In: Brain mechanisms and spatial vision, ed. Ingle, D. J., Jeannerod, M. & Lee, D. N.. Martinus Nijhoff. [JP]Google Scholar
Paillard, J. & Brouchon, M. (1974) A proprioceptive contribution to the spatial encoding of position cues for ballistic movements. Brain Research 71:273–84. [JP]Google Scholar
Parks, T. E. (1965) Post-retinal visual storage. American Journal of Psychology 78:145–47. [rBB]Google Scholar
Pelz, J. B. & Hayhoe, M. M. (1991) Influence of the visual scene and eye position signals in space constancy. Investigative Ophthalmology and Visual Science (Supplement) 32:1025. [KSK]Google Scholar
Perenin, M. T. & Vighetto, A. (1983) Optic ataxia: A specific disorder in visuomotor coordination. in: Spatially oriental behavior, ed. Hein, A. & Jeannerod, M.. Springer. [CP]Google Scholar
Petrov, A. P. (1992) Gaze direction and stereosynthesis. In: Intellectual processes and simulation, ed. Chernavsky, A. V.. Nauka. [APP]Google Scholar
Petrov, A. P. & Zeukin, G. M. (1973) Torsional eye movements and constancy of the visual field. Vision Research 13:2465–77. [APP]Google Scholar
Petrov, A. P. & Zeukin, G. M.(1976a) Transformations of afterimage caused by viewers' movements, and context-independent mechanism of stability of the visual field. Physiology of Man 2:925–31. [APP]Google Scholar
Petrov, A. P. & Zeukin, G. M.(1976b) The invariant stereosynthesis and stability of the visual field at saccadic eye movements. In: Proceedings of the Fourth Symposium on Physiology of Sensory Systems, Leningrad. [APP]Google Scholar
Pigarev, I. N. & Rodionova, E. I. (1988) Neurons with visual receptive fields independent of the position of eyes in cat parietal cortex. Sensory Systems (Moscow): 245–54 (in Russian). [arBB, CP, ENS]Google Scholar
Pollatsck, A., Rayner, K. & Henderson, J. M. (1990) Role of spatial location in integration of pictorial information across saccades. Journal of Experimental Psychology: Human Perception and Performance 16:199–210. [aBB]Google Scholar
Post, R. B. & Leibowitz, H. W. (1985) A revised analysis of the role of efference in motion perception. Perception 14:631–43. [DAO]Google Scholar
Pouget, A., Fisher, S. & Sejnowski, S. (1993) Egocentric spatial representation in early vision. Journal of Cognitive Neuroscience 5:150–61. [AP]Google Scholar
Prablanc, C. & Martin, O. (1992) Automatic control during hand reaching at undetected two-dimensional target displacements. Journal of Neurophysiology 67:455–69. [CP]Google Scholar
Pribram, K. H. (1988) Holonomic brain theory: Coopcrativity and reciprocity in processing the configural and cognitive aspects of perception. Erlbaum. [WLS]Google Scholar
Purkinje, J. (1825) Über die Scheinbewegungen, welche im subjectiven Umfang des Gesichtssinnes vorkommen. Bulletin der naturwissenschaftlichen Section der Schlesischen Gesellschaft 4:9–10. [O-JG]Google Scholar
Pylyshyn, Z. W. & Storm, R. W. (1988) Tracking multiple independent targets: Evidence for a parallel tracking mechanism. Spatial Vision 3:179–97. [KSK]Google Scholar
Rayner, K. & Pollatsek, A. (1983) Is visual information integrated across saccades? Perception & Psychophysics 34:39–48. [aBB]Google Scholar
Reed, E. S. (1982) An outline of a theory of action systems. Journal of Motor Behavior 14(2):98–134. [DAO]Google Scholar
Reed, E. S. (1988) James J. Gibson and the psychology of perception. Yale University Press. [DAO]Google Scholar
Reed, E. S. (1989) Changing theories of postural development. In: Development of posture and gait across the life span, ed. Woollacott, M. H. & Shumway-Cook, A.. University of South Carolina Press. [DAO]Google Scholar
Rentschler, I., Jüttner, M. & Caelli, T. (in press) Probabilistic analysis of human supervised learning and classification. Vision Research. [MJ]Google Scholar
Riggs, L. A., Merton, P. & Morton, H. (1974) Suppression of visual phosphenes during saccadic eye movements. Vision Research 14:997–1011. [EC]Google Scholar
Rock, I. (1977) In defense of unconscious inference. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [aBB, WLS]Google Scholar
Rock, I. & Ebenholtz, S. (1962) Stroboscopic movement based on change of phenomenal location rather than retinal location. American Journal of Psychology 75:193–207. [rBB]Google Scholar
Rovamo, J. & Virsu, V. (1979) An estimation and application of the human cortical magnification factor. Experimental Brain Research 37:495–510. [MJ]Google Scholar
Salzman, C. D., Britten, K. H. & Newsome, W. T. (1990) Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77. [aBB]Google Scholar
Schlag, J. & Schlag-Rey, M. (1990) Colliding saccades may reveal the secret of their marching orders. Trends in Neurosciences 13:410–15. [SM]Google Scholar
Sechenov, I. (1878/1968) The elements of thought. In: Selected works (English translation). Bonset. [O-JG]Google Scholar
Shebilske, W. L. (1977) Visuomotor coordination, visual direction and position constancies. In: Stability and constancy in visual perception: Mechanisms and processes, ed. Epstein, W.. Wiley. [aBB, JP, WLS]Google Scholar
Shebilske, W. L. (1981) Visual direction illusions in everyday situations: Implications for sensorimotor and ecological theories. In: Eye movements: Cognition and visual perception, ed. Fisher, D. F., Monty, R. A. & Senders, J. W.. Erlbaum. [DAO, WLS]Google Scholar
Shebilske, W. L. (1984) Efferent factors in cognition and perception. In: Cognition and motor processes, ed. Prinz, W. & Sanders, A. F.. Plenum Press. [WLS]Google Scholar
Shebilske, W. L.(1987a) An ecological efference mediation theory of natural event perception. In: Perspectives on perception and action, ed. Prinz, W. & Sanders, A. F.. Erlbaum. [DAO, WLS]Google Scholar
Shebilske, W. L.(1987b) Baseball batters support an ecological efference mediation theory of natural event perception. In: Sensorimotor interactions in space perception and action, ed. Bouwhuis, D. G., Bridgeman, B., Owens, D. A., Shebilske, W. L. & Wolff, P.. North-Holland. [WLS]Google Scholar
Shebilske, W. L. (1990) Visuomotor modularity, ontogeny, and training high-performance skills with spatial display instruments. In: Spatial displays and spatial instruments, ed. Ellis, S. R. & Kaiser, M. K.. Erlbaum. [aBB, WLS]Google Scholar
Shebilske, W. L. & Peters, P. (1993) Perception, action, and constancy. In: Handbook of perception, ed. Prinz, W. & Bridgeman, B.. Springer-Verlag. [WLS]Google Scholar
Shebilske, W. L., Proffitt, D. R. & Fisher, S. K. (1984) Efferent factors in natural event perception can be rationalized and verified: A reply to Turvey and Solomon. Journal of Experimental Psychology: Human Perception & Performance 10:455–60. [WLS]Google Scholar
Sherman, S. M. (1985) Functional organization of the W-, X-, and Y-cell pathways in the cat: A review and hypothesis. Progress in Psychobiology and Physiological Psychology 11:233–314. [aBB]Google Scholar
Sherrington, C. S. (1898) Further note on the sensory nerves of the eye muscles. Proceedings of the Royal Society 64:120–21. [aBB]Google Scholar
Sherrington, C. S. (1918) Observations on the sensual role of the proprioceptive nerve supply of the extrinsic eye muscles. Brain 41:332–43. [aBB, O-JG]Google Scholar
Shimojo, S., Silverman, G. H. & Nakayama, K. (1989) Occlusion and the solution to the aperture problem for motion. Vision Research 29:619–26. [aBB]Google Scholar
Shults, W. T., Stark, L., Hoyt, W. F. & Ochs, A. S. (1977) Normal saccadic structure of voluntary nystagmus. Archives of Ophthalmology 95:1399–1404. [rBB]Google Scholar
Skavenski, A. (1990) Eye movement and visual localization of objects in space. In: Eye movements and their role in visual and cognitive processes. Vol. 4: Reviews of oculomotor research, ed. Kowler, E.. Elsevier. [aBB]Google Scholar
Smeets, J. B. J. & Brenner, E. (1994) The difference between the perception of absolute and relative motion: A reaction time study. Vision Research 34:191–95. [JBJS]Google Scholar
Sokolov, E. N. (1980) Neuronnyje mekhanismy sakkadischeskikh dviszenij glaz [Neuronal mechanisms of saccadic eye movements]. Voprosy Psykhologii 25:64–77. [aBB]Google Scholar
Sperry, R. W. (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology 43:482–89. [aBB, O-JG]Google Scholar
Stark, L. & Bridgeman, B. (1983) Role of corollary discharge in space constancy. Perception & Psychophysics 34:371–80. [arBB]Google Scholar
Stein, J. F. (1992) The representation of egocentric space in the posterior parietal cortex. Behavioral and Brain Sciences 15:691–700. [CP, GWS]Google Scholar
Steinbach, M. J. (1987) Proprioceptive knowledge of eye position. Vision Research 27:1737–44. [aBB]Google Scholar
Steinbuch, J. C. (1817) Vergiftung durch verdorbene Würste. Tübinger Blätter für Naturwissenschaften und Arzneykunde 3:26–45. [O-JG]Google Scholar
Steinman, R. M. & Collewijn, H. (1980) Binocular retinal image motion during natural active head rotation. Research 20:415–29. [aBB[Google Scholar
Stevens, J. K., Emerson, R. C., Gerstein, G., Kallos, T., Neufield, G., Nichols, C. & Rosenquist, A. (1976) Paralysis of the awake human: Visual perceptions. Vision Research 16:93–98. [aBB]Google Scholar
Stoper, A. (1967) Vision during pursuit eye movement: The role of oculomotor information. Ph.D. dissertation, Brandeis University. Michigan University Microfilms, 67–16:579. [AES]Google Scholar
Stoper, A. (1973) Apparent motion of stimuli presented stroboscopically during pursuit movement of the eye. Perception & Psychophysics 23:201–11. [AES]Google Scholar
Strasburger, H., Harvey, L. O. Jr. & Rentschler, I. (1991) Contrast thresholds for identification of numeric characters in direct and eccentric view. Perception & Psychophysics 49:495–508. [MJ]Google Scholar
Strong, G. W. & Whitehead, B. A. (1989) A solution to the tag-assignment problem for neural networks. Behavioral and Brain Sciences 12:381–433. [aBB, GWS]Google Scholar
Teuber, H.-L. (1960) Perception. In: Handbook of physiology. Vol. 3: Section of neurophysiology, ed. Field, J., Magoun, H. W. & Hall, V. E.. American Physiological Society. [O-JG]Google Scholar
Toennies, J. F.(1949a) Die Erregungssteuerung im Zentralnervensystem. Erregungsfokus der Synapse und Rückmeldung als Funktionsprinzipien. Archiv Psychiatrie Zeitschrift Neurologie 182:478–535. [O-JG]Google Scholar
Toennies, J. F.(1949b) Die Rückmeldung als Funktionsprinzip im Zentralnervensystem. Berichte der Gesamten Physiologie 135:449. [O-JG]Google Scholar
Toennies, J. F. & Jung, R. (1948) Über rasch wiederholte Entladungen der Motoneurone und die Hemmungsphase des Beugereflexes. Pflügers Archiv 250:667–93. [O-JG]Google Scholar
Trehub, A. (1977) Neuronal models for cognitive processes: Networks for learning, perception and imagination. Journal of Theoretical Biology 65:141–69. [AT]Google Scholar
Trevarthen, C. (1968) Two mechanisms of vision in primates. Psychologische Forschung 31:299–337. [aBB]Google Scholar
Trotter, Y., Celebrini, S., Thorpe, S., Stricanne, B. & Imbert, M. (1992) Modulation of neural sterescopic processing in primate area VI by the viewing distance. Science 257:1279–81. [AP]Google Scholar
Turvey, M. T. (1977) Contrasting orientations to a theory of visual information-processing. Psychological Review 84:67–88. [rBB]Google Scholar
Turvey, M. T. & Carello, C. (1986) The ecological approach to perceiving-acting: A pictorial essay. In: Sensorimotor interactions in space perception and action, ed. Bouwhuis, D. G., Bridgeman, B., Owens, D. A., Shebilske, W. L. & Wolff, P.. North-Holland. [WLS]Google Scholar
Uttal, W. R. (1979) Do central nonlinearities exist? Behavioral and Brain Sciences 2:286. [aBB]Google Scholar
Van der Heijden, A. H. C., Bridgeman, B. & Mewhort, D. J. K. (1986) Is stimulus persistence affected by eye movements? A critique of Davidson, Fox, and Dick (1973). Psychological Research 40:179–81. [aBB]Google Scholar
Velichkovsky, B. M. (1982) Visual cognition and its spatial-temporal context. In: Cognitive research in psychology, ed. Klix, F., Hoffmann, J. & Van de Meer, E.. North-Holland. [aBB]Google Scholar
Velichkovsky, B. M. (1992) The spatial representational system: A single system of perceptual-verbal access? PSYCOLOQUY 3(46) space.7. [rBB]Google Scholar
Velichkovsky, B. M. (1993) The levels endeavour in psychology and cognitive science. In: Current advances in psychological science, ed. Bertelson, P., Eelen, P. & d'Ydewalle, G.. Erlbaum. [rBB]Google Scholar
Volkman, F., Schick, A. & Riggs, L. (1968) Time course of visual inhibition during voluntary saccades. Journal of the Optical Society of America 58:1410–14. [aBB, EC]Google Scholar
Von Graefe, A. (1854) Beiträge zur Physiologie und Pathologie der schiefen Augenmuskeln. Graefes Archiv für Ophthalmologie I(1):1–81. [O-JG]Google Scholar
Von Helmholtz, H. (1866) Handbuch der physiologischen Optik, vol. 3. Voss. [aBB, JTE, HM]Google Scholar
Von Hofsten, C. (1979) Recalibration of the convergence system. Perception 8:37–42. [DAO]Google Scholar
Von Holst, E. (1954) Relations between the central nervous system and the peripheral organs. British Journal of Animal Behaviour 2:89–94. [O-JG]Google Scholar
Von Holst, E. & Mittelstaedt, H. (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–76. (English translation: [1980] The reafference principle. In: The organization of action, ed. C. R. Gallistel. Wiley.) [aBB, O-JG, HM, CP, PVD]Google Scholar
Von Holst, E. & Mittelstaedt, H. (1971) The principle of reafference: Interactions between the central nervous system and the peripheral organs. In: Perceptual processing: Stimulus equivalence and pattern recognition, ed. Dodwell, P. C.. Appleton. [aBB]Google Scholar
Von Kries, J. (1910) Zusätze zum Handbuch der Physiologischcn Optik (H. Von Helmholtz 1866). III. Band, III. Auflage: 458–533. Leopold Voss. [HM]Google Scholar
Wallach, H. & Frey, K. J. (1972) Adaptation in distance perception based on oculomotor cues. Perception & Psychophysics 11:77–83. [DAO]Google Scholar
Wallach, H. & Lewis, C. (1966) The effect of abnormal displacements of the retinal image during eye movements. Perception & Psychophysics 1:25–29. [AES]Google Scholar
Walls, G. L. (1942) The vertebrate eye and its adaptive radiations. Cranbrook Press. [DAO]Google Scholar
Warren, R. (1990) Preliminary questions for the study of ego-motion. In: Perception and control of self-motion, ed. Warren, R. & Wortheim, A. H.. Erlbaum. [WLS]Google Scholar
Warren, W. H. Jr. & Shaw, R. E., eds. (1985) Persistence and change: Proceedings of the First International Conference on Event Perception. Erlbaum. [DAO]Google Scholar
Watanabe, T. & Cavanagh, P. (1991) Texture and motion spreading, the aperture problem, and transparency. Perception & Psychophysics 50:459–64. [aBB]Google Scholar
Weiskrantz, L. (1989) Blindsight. In: Handbook of neuropsychology, vol. 2., ed. Boiler, F. & Grafman, J.. Elsevier. [JP]Google Scholar
Weyand, T. & Malpeli, J. (1993) Responses of neurons in primary visual cortex are modulated by eye position. Journal of Neurophysiology 69(6):2258–60. [AP]Google Scholar
Wilson, F. A. W., Scalaidhe, S. P. O. & Goldman-Rakic, P. S. (1993) Dissociation of object and spatial processing in primate prefrontal cortex. Science 260:1955–58. [rBB]Google Scholar
Wilson, H. R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. (1990) The perception of form: Retina to striate cortex. In: Visual perception: The neurophysiological foundations, ed. Spillmann, L. & Werner, J. B.. Academic Press. [MJ]Google Scholar
Windhorst, U. (1988) How brain-like is the spinal cord? Interacting cell assemblies in the nervous system. Springer. [PVD]Google Scholar
Wolf, W., Hauske, G. & Lupp, U. (1980) Interaction of pre- and postsaccadic patterns having the same coordinates in space. Vision Research 20:117–25. [CP]Google Scholar
Wong, S. C. P. & Frost, B. J. (1978) Subjective motion and acceleration induced by the movement of the observer's entire field. Perception & Psychophysics 24:115–20. [LRH]Google Scholar
Würmle, O. (1983) Visuelle Richtungskonstanz und Umstimmung retinaler Raumwerte bei sakkadischen Augenbewegungen. Juris. [aBB]Google Scholar
Wurtz, R. H. (1969) Response of striate cortex neurons to stimuli during rapid eye movements in the monkey. Journal of Neurophysiology 32:975–86. [aBB]Google Scholar
Zeki, S. (1990) Parallelism and functional specialization in human visual cortex. Cold Spring Harbor Symposium on Quantitative Biology, vol. 55. Cold Spring Harbor Laboratory Press. [ENS]Google Scholar
Zincenko, V. P. & Vergiles, N. Y. (1972) Formation of visual image: Studies of stabilized retinal images. Consultants Bureau. [rBB]Google Scholar
Zipser, J. & Andersen, R. A. (1988) A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 33:679–84. [aBB, HM, AP]Google Scholar