Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T13:21:56.306Z Has data issue: false hasContentIssue false

The use of immunological techniques in the analysis of archaeological materials — a response to Eisele; with report of studies at Head-Smashed-In Buffalo Jump

Published online by Cambridge University Press:  02 January 2015

Margaret E. Newman
Affiliation:
Departments of Biological Sciences & Archaeology, University of Calgary, Calgary AB T2N 1N4, Canada. E-mail: [email protected]
Howard Ceri
Affiliation:
Department of Biological Science, University of Calgary, Calgary AB T2N 1N4, Canada
Brian Kooyman
Affiliation:
Department of Archaeology, University of Calgary, Calgary AB T2N 1N4, Canada. E-mail: [email protected]

Extract

Eisele et al. in ANTIQUITY (1995) reported discouraging results from experiments to see if blood traces reliably survive on stone tools. Here, issue is taken with aspects of that study, and new research is reported from the celebrated buffalo-jump at Head-Smashed-In, southern Alberta. The great bone-bed there, consisting almost exclusively of bison bones, gives rare opportunity to study remains of a known single species under the genuine conditions of an archaeological site, rather than a supposing simulation.

Type
Notes
Copyright
Copyright © Antiquity Publications Ltd. 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbas, A. K., Lichtman, A. H. & Pober, J. S.. 1994. Cellular and molecular immunology. Pittsburgh (PA): W. B. Saunders.Google Scholar
Ashoor, S. H., Monte, W. C. & Stiles, P. G.. 1988. Liquid chromatographic identification of meats, Journal of the Association of Offal Analytical Chemistry 71: 397403.Google ScholarPubMed
Barr, S. J. 1989. Blood from stones: blood residue analysis of the Dietz Site Clovis artefacts. Paper presented at the 54th annual meeting of the Society for American Archaeology, Atlanta.Google Scholar
Bartlett, S. E. & Davidson, W. S.. 1992. FINS (Forensically Informative Nucleotide Sequencing): a procedure for identifying the animal origin of biological specimens, Biotechniques 12: 408–11.Google ScholarPubMed
Berger, R. G., Mageau, R. P., Schwab, B. & Johnston, R.W.. 1988. Detection of poultry and pork in cooked and canned meats by enzyme-linked immunoabsorbent assays, Journal Association of Offal Analytical Chemistry 71: 406–9.Google Scholar
Cattaneo, C., Gelsthorpe, K., Phillips, P. & Sokol, R. J.. 1993. Blood residues on stone tools: indoor and outdoor experiments, World Archaeology 25 (1): 2942.CrossRefGoogle ScholarPubMed
Culliford, B. J. 1964. Precipitin reactions in forensic problems, Nature 201: 1092–4.CrossRefGoogle ScholarPubMed
Dorrill, M. & Whitehead, P. H.. 1979. The species identification of very old human bloodstains, Forensic Science International 13: 111–16.CrossRefGoogle Scholar
Downs, E. F. 1985. An approach to detecting and identifying blood residues on archaeological stone artefacts: a feasibility study. MS on file. Cambridge (MA): Center for Materials Research in Archaeology and Ethnology.Google Scholar
Eclinton, G. & Logan, G. A.. 1991. Molecular preservation, Philosophical Transactions of the Royal Society of London B334: 315–28.Google Scholar
Elsele, J. 1994. Survival and detection of blood residues on stone tools. Reno (NV): University of Nevada, Department of Anthropology. Technical Report 94-1.Google Scholar
Eisele, J. A., Fowler, D. D., Haynes, G. & Lewis, R. A.. 1995. Survival and detection of blood residues on stone tools, Antiquity 69: 3646.Google Scholar
Gaensslen, R. E. 1983. Sourcebook in forensic serology, immunology, and biochemistry. Washington (DC): US Department of Justice.Google Scholar
Guglich, E. A., Wilson, P. J. & White, B. N.. 1993. Application of DNA finger-printing to enforcement of hunting regulations in Ontario, Journal of Forensic Sciences 38: 4859.CrossRefGoogle Scholar
Gurtler, L. G., Jäger, V., Gruber, W., Hillmar, I., Schobloch, R., Müller, P. K. & Ziegelmayer, G.. 1981. Presence of proteins in human bones 200, 1200 and 1500 years of age, Human Biology 53: 137–50.Google Scholar
Hortola, P. 1992. SEM analysis of red blood cells in aged human bloodstains, Forensic Science International 55:139-59.Google Scholar
Hoste, B., Brocteur, J. & Andre, A.. 1978. Indefinite storage of dried Gm and Km (Inv) antigens: examination of bloodstains 33 years old, Forensic Science 11: 109–13.CrossRefGoogle ScholarPubMed
Hyland, D. C. & Anderson, T. R.. 1990. Blood residue analysis of the lithic assemblage from the Mitchell Locality, in Boldurian, A. T., Lithic technology at the Mitchell Locality of Blackwater Draw: a stratified Folsom site in eastern NewMexico, 105–10. Lincoln: Plains Anthropological Society. Plains Anthropologist Memoir 24.Google Scholar
Hyland, D. C., Tersak, J. M., Adovasio, J. M. & Siegel, M. I.. 1990. Identification of the species of origin of residual blood on lithic material, American Antiquity 55: 104–12.CrossRefGoogle Scholar
Johnstone, A. & Thorpe, R.. 1982. Immunochemistry in practice. Oxford: Blackwell.Google Scholar
Kind, S. S. & Cleevely, R. M.. 1969. The use of ammoniacal bloodstain extracts in ABO Groupings, Journal of Forensic Sciences 15: 131–4.Google Scholar
King, N. L. 1984. Species identification of cooked meats by enzyme-staining of isoelectricfocusing gels, Meat Science 11: 5972.CrossRefGoogle ScholarPubMed
Kooyman, B., Newman, M. E. & Ceri, H.. 1992. Verifying the reliability of blood residue analysis on archaeological tools, Journal of Archaeological Science 19 (3): 265–9.CrossRefGoogle Scholar
Lee, H. C. & Deforest, P.R.. 1976. A precipitin-inhibition test on denatured bloodstains for the determination of human origin, Journal of Forensic Sciences 21: 804–9.CrossRefGoogle ScholarPubMed
Lowenstein, J. M. 1985. Molecular approaches to the identification of species, American Scientist 73: 541–7.Google Scholar
Lowenstein, J. M. 1986. Evolutionary applications of radioimmunoassay. American Biotechnology Laboratory 4 (6): 1215.Google Scholar
Mcclymont, R. A., Fenton, M. & Thompson, J. R.. 1982. Identification of cervid tissues and hybridization by serum albumin, Journal of Wildlife Management 46 (2): 540–44.Google Scholar
Marchalonis, J. J. 1982. Structure of antibodies and their usefulness to non-immunologists, Marchalonis, J. J. & Warr, G. W. (ed.), Antibody as a tool: 319. Toronto: John Wiley.Google Scholar
Mardini, A. 1984. Species identification of selected mammals by agarose gel electrophoresis, Wildlife Society Bulletin 12 (3): 249–51.Google Scholar
Milgrom, F. & Campbell, W. A.. 1970. Identification of species origin of tissues found in a sewer, Journal of Forensic Sciences 15: 7885.Google Scholar
Miller, M.F. II & Wyckoff, G.R.W.. 1968. Proteins in dinosaur bones, Proceedings National Academy of Sciences of the USA 60: 176–8.Google Scholar
Newman, M. E. 1990. The hidden evidence from Hidden Cave, Nevada: an application of immunological techniques to the analysis of archaeological materials. Ph.D dissertation, Department of Anthropology, University of Toronto.Google Scholar
Nuttall, G.H.F. 1901a. The recognition of human blood, British Medical Journal 1: 788.Google Scholar
Nuttall, G.H.F. 1901b. A further note on the biological test for blood and its importance in zoological classification, British Medical Journal 2: 669.CrossRefGoogle ScholarPubMed
Nuttall, G.H.F. 1904. Blood immunity and blood relationship. London: Cambridge University Press.Google Scholar
Podlecki, M. A. & Stolorow, M. D.. 1985. Detectability of group-specific component (Gc) in aged bloodstains, Journal of Forensic Sciences 30 (2): 398404.Google Scholar
Prager, E. M., Wilson, A. C., Lowenstein, J. M. & Sarich, V. M.. 1980. Mammoth albumin, Science 209: 287–9.CrossRefGoogle ScholarPubMed
Robbins, L. L. & Brew, K.. 1990. Proteins from the organic matrix of core-top and fossil planktonic foraminifera, Geochemica et Cosmochimica Acta 54: 2285–92.CrossRefGoogle Scholar
Shinomiya, T., Muller, M., Muller, P.H. & Lesage, R.. 1978. Apport de l'immuno-électrophorèse pour l'expertise des taches de sang en medicine légale, Forensic Science International 12: 157–63.CrossRefGoogle Scholar
Thomas, K. D. 1993. Molecular biology and archaeology: a prospectus for inter-disciplinary research, World Archaeology 25 (1): 113.CrossRefGoogle ScholarPubMed
Voss-Foucart, M.F. 1968. Paléoprotéines des coquilles fossiles d'oeufs de dinosauriens du Crétacé Supérieur de Provence, Comparative Biochemical and Physiology 24: 31–6.Google Scholar
Zimmerman, M. R. 1973. Blood cells preserved in a mummy 2000 years old, Science 180: 303–4.CrossRefGoogle Scholar