Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T04:55:39.586Z Has data issue: false hasContentIssue false

Genetic differentiation of Indian camel (Camelus dromedarius) breeds using random oligonucleotide primers

Published online by Cambridge University Press:  01 August 2011

S.C. Mehta
Affiliation:
National Research Centre on Camel, Bikaner 334001, India
B.P. Mishra
Affiliation:
National Bureau of Animal Genetic Resources, Karnal 132001, India
M.S. Sahani
Affiliation:
National Research Centre on Camel, Bikaner 334001, India
Get access

Summary

The camel population in India is facing a severe decline which demands that immediate steps are taken to ensure its conservation. Characterisation is an integral part of the conservation program. The Polymerase Chain Reaction-Randomly Amplified Polymorphic DNA profile of unrelated camels of the Bikaneri (29), Jaisalmeri (30) and Kachchhi (18) breeds were analyzed. Reproducible polymorphic bands with varying frequencies among the three breeds of camel were obtained with five oligonucleotide primers. A total of 75 bands were amplified, of which 27 (36%) were polymorphic. The probability of obtaining identical fingerprints was observed to be the lowest in primer GC-10 (5.7%) followed by OP-08 (8.7%), GT-10 (11.3%), G-2 (15.5%) and G-1 (80%). Breed informative bands were amplified. The maximum genetic variability was observed in the Bikaneri (0.80±0.05) followed by the Kachchhi (0.84±0.06) and the Jaisalmeri (0.87±0.05) breeds. The inter-breed genetic distance estimates indicated a closer relationship in the Bikaneri-Kachchhi camels, (0.075), followed by the Jaisalmeri-Kachchhi (0.106) and Bikaneri-Jaisalmeri (0.132) breeds. A similar genetic relationship was observed when the degree of population subdivision was measured between the Bikaneri-Kachchhi (0.529), Jaisalmeri-Kachchhi (0.558) and Bikaneri-Jaisalmeri (0.566) breeds.

Resumen

La población de camélidos en la India se enfrenta con un declive importante que requiere iniciar con una rápida intervención en vistas de su conservación. Un parte integral del programa de conservación está representado por la caracterización. Se ha analizado el perfil de ADN polimórfico amplificado casualmente de la cadena de reacción de polimerasa en camélidos sin relación tales las razas Bikaneri (29), Jaisalmeri (30), y Kachchhi (18). Las bandas polifórmicas reproducibles con frecuencias variantes entre las tres razas we obtuvieron con cinco oligonucleotidos primarios. Un total de 75 bandas fueron amplificadas, de las cuales 27 (el 36%) resultaron polimórficas. La probabilidad de obtener huellas idénticas fue inferior en el primer GC-10 (5,7%), seguido por OP-08 (8,7%), GT-10 (11,3%), G-2 (15,5%) y G-1 (80%). Las bandas de información de raza fueron amplificadas. El máximo de variabilidad genética se observó en la raza Bikaneri (0,80±0,05) seguida por la raza Kachchhi (0,85±0,06) y la Jaisalmeri (0,87±0,05). La distancia genética estimada entre razas indica una relación estrecha entre las razas Bikaneri y Kachchhi (0,075), seguida por Jaisalmeri-Kachchhi (0,106) y Bikaneri-Jaisalmeri (0,132). Se observó una relación genética similar cuando el grado de subdivisión de la población fue medido entre Bikaneri-Kachchhi (0,529), Jaisalmeri-Kachchhi (0,558) y Bikaneri-Jaisalmeri (0,566).

Type
Research Articles
Copyright
Copyright © Food and Agriculture Organization of the United Nations 0000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

List of References

Annual Report. 19971998. National Research Centre on Camel, Bikaner.Google Scholar
Chung, E.R., Kim, W.T. & Han, S.K.. 1995. Analysis of DNA polymorphisms and genetic characteristics in Holstein dairy cattle using RAPD-PCR technique. Korean Journal of Animal Science 37, 455466.Google Scholar
Davis, L.G., Dibner, M.D. & Batley, J.F. (Eds.). 1986. Basic Methods in Molecular Biology. Elsevier Science, New York, pp. 4446.CrossRefGoogle Scholar
Elo, K., Ivanoff, S., Vuorinen, J.A., & Piironen, J.. 1997. Inheritance of RAPD markers and detection of interspecific hybridization with brown trout and Atlantic Salmon. Aquaculture 152, 5565.CrossRefGoogle Scholar
FAOSTAT. 2005. <http://faostat.fao.org/faostat/collections?subset=agriculture>..>Google Scholar
Georges, M., Lequarri, A.-S.. Castelli, M.. Hanset, R. & Vassart, G.. 1988. DNA fingerprinting in domestic animals using four different minisatellite probes. Cytogenetics and Cell Genetics, 47, 127131.CrossRefGoogle ScholarPubMed
Jeffreys, A.J. & Morton, D.B.. 1987. DNA fingerprints of dogs and cats. Animal Genetics 18, 145155.CrossRefGoogle ScholarPubMed
Kantanen, J., Vilkki, J.. Elo, K., & Mäki-Tanila, A.. 1995. Random amplified polymorphic DNA in cattle and sheep: application for detecting genetic variation. Animal Genetics 26, 315320.CrossRefGoogle ScholarPubMed
Kemp, S.J. & Teale, A.J.. 1992. Random amplified DNA polymorphism (RAPDs) and pooled DNA in bovine genetic studies, Animal Genetics, 23, suppl. 1, 62.Google Scholar
Kuhnlein, U., Dawe, Y. Zadwoeny, D. & Gavora, J.S.. 1989. DNA fingerprinting: a tool for determining genetic distances between strains of poultry. Theoretical and Applied Genetics, 77, 669672.CrossRefGoogle ScholarPubMed
Livestock Census. 2003. 17th Livestock Census, Department of Agricultural Research and Education, Ministry of Agriculture, Government of India.Google Scholar
Liu, Z., Li, P.Argue, B.J. & Dunham, R.A.. 1998. Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids. Animal Genetics, 29, 5862.CrossRefGoogle Scholar
Lynch, M. 1990. The similarity index and DNA fingerprinting. Molecular Biology and Evolution, 7, 478484.Google ScholarPubMed
Lynch, M. 1991. In Burke, T., Dolf, GJeffreys, A.J., & Wolf, R (Eds.) DNA fingerprinting: Approach and Applications, Berkhauser Verlag, Israel, pp. 133136.Google Scholar
Min, J.S., Min, B.R., Han, J.Y. & Lee, M.. 1996. Identification of the species of meat of Korean cattle, deer, sheep and goats using random amplified polymorphic DNAs. Korean Journal of Animal Science 38, 231238.Google Scholar
Mishra, B.P., Tandon, S.N. & Khanna, N.D.. 1998. Genetic variation in Indian dromedary using random amplified polymorphic DNA (RAPD) technique. In The International Meeting on Camel Production and Future Perspective, May 1998, Al Ain, UAE, 49.Google Scholar
Morsch, G. & Leibengut, F.. 1994. DNA fingerprinting in roe deer using the digoxigenated probe (GTG)5. Animal Genetics, 25, 2530.CrossRefGoogle ScholarPubMed
Nei, M. & Li, W.. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of National Academy of Science, USA, 76, 52565273.Google ScholarPubMed
Nienhuis, J. & Sills, G.. 1992. The potential of hybrid varieties of self pollinated vegetables. In Datte, Y.. Dumas, C., & Gallis, M. (Eds). Reproductive Biology and Plant Breeding, Springer-Verlag, Switzerland, pp. 387396.CrossRefGoogle Scholar
Plotsky, Y., Kaiser, M.G. & Lamont, S.J.. 1995. Genetic characterisation of highly inbred lines by two methods: DNA fingerprinting and polymerase chain reaction using arbitrary primers. Animal Genetics, 26, 163170.CrossRefGoogle ScholarPubMed
Rai, A.K., Roy, A.K. & Khanna, N.D.. 1992. Speed and strides of different breeds of camel. Indian Journal of Animal Science, 62, 9192.Google Scholar
Rathore, G.S. 1986. Camels and their management. ICAR publication, New Delhi, IndiaGoogle Scholar
Rothuizen, J. & Wolferen, M.V.. 1994. Randomly amplified DNA polymorphisms in dog are reproducible and display Mendelian transmission. Animal Genetics 25, 1318.CrossRefGoogle ScholarPubMed
Sahai, R. & Vijh, R.K.. 1993. Cytogenetics of Camel: a monograph. Published by National Institute of Animal Genetics, Karnal and National Research Centre on Camel, Bikaner, India.Google Scholar
Sahani, M.S., Sharma, N., & Khanna, N.D.. 1996. Hair production in Indian camels (Camelus dromearius) managed under farm conditions. Indian Veterinary Journal 73, 531533.Google Scholar
Sahani, M.S., Rathinasabapathy, M., Gorakhmal, & Khanna, N.D.. 1998. Milking technique and other factors affecting milk production potential in different breeds of camels under farm conditions. Indian Journal of Animal Science 68, 5456.Google Scholar
Shereif, N.A. & Alhadrami, G.A.. 1996. Detection of genetic variation in racing camels using random amplified polymorphic DNA (RAPD) technique. Journal of Camel Practice and Research 3, 9194.Google Scholar
Smith, O.S., Smith, J.S.C.Bowen, S.L.Tenborg, R.A. & Wall, S.J.. 1990. Similarity among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis and RFLPs. Theoretical and Applied Genetics 80, 833840.CrossRefGoogle ScholarPubMed
Tandon, S.N. 1998. Studies on blood group and biochemical polymorphism in Indian camels. In The International Meeting on Camel Production and Future Perspective, May 1998, Al Ain, UAE, 55.Google Scholar
Tandon, S.N., Kasturi, M.. Raisinghani, G. & Khanna, N.D.. 1997a. Protein polymorphism in Indian camel. Indian Veterinary Journal 74, 533534.Google Scholar
Tandon, S.N., Raisinghani, G.. Kasturi, M., & Khanna, N.D.. 1997b. Electrophoretic studies of certain red cell enzymes in Indian dromedaries. Indian Veterinary Journal 74, 535.Google Scholar
Wei, R., Dentine, M.R. & Bitgood, J.J.. 1997. Randomly amplified polymorphic DNA markers in crosses between inbred lines of Rhode Island Red and White Leghorn chickens. Animal Genetics 28, 291294.CrossRefGoogle Scholar
Welsh, J. & McClelland, M.. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research 18, 72137218.CrossRefGoogle ScholarPubMed
Welsh, J., Petersen, C., & McClelland, M.. 1991. Polymorphisms generated by arbitrary primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acid Research 19, 303306.Google Scholar
Wetton, J.H., Carter, R.E.Parkin, D.T. & Walters, D.. 1987. Demographic study of wild a wild sparrow population by DNA fingerprinting. Nature 327, 147152.CrossRefGoogle Scholar
Williams, J.G.K., Hanodey, M.K., Rafalski, J.A. & Tingey, S.V.. 1993. Genetic analysis using random amplified polymorphic DNA markers. Methods in Enzymology 218, 704740.Google ScholarPubMed
Williams, J.G.K., Kubelik, A.R.Livak, K.J.Rafalski, J.A. & Tingey, S.V.. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acid Research 18, 65316535.CrossRefGoogle ScholarPubMed