Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T12:16:54.420Z Has data issue: false hasContentIssue false

Effect of inbreeding and individual increase in inbreeding on growth in Nilagiri and Sandyno breeds of sheep

Published online by Cambridge University Press:  15 March 2016

R. Venkataramanan*
Affiliation:
Postgraduate Research Institute in Animal Sciences, TANUVAS, Kattupakkam, Kancheepuram, Tamilnadu 603 203, India
A. Subramanian
Affiliation:
Department of Animal Genetics and Breeding, Madras Veterinary College, Chennai 600 007, India
S.N. Sivaselvam
Affiliation:
Department of Animal Genetics and Breeding, Madras Veterinary College, Chennai 600 007, India
T. Sivakumar
Affiliation:
College of Food and Dairy Technology, Koduvalli, Tamilnadu 600 052, India
C. Sreekumar
Affiliation:
Postgraduate Research Institute in Animal Sciences, TANUVAS, Kattupakkam, Kancheepuram, Tamilnadu 603 203, India
M. Iyue
Affiliation:
Sheep Breeding Research Station, Sandynallah, The Nilgiris, Tamilnadu 643 237, India
*
Correspondence to: R. Venkataramanan, Postgraduate Research Institute in Animal Sciences, TANUVAS, Kattupakkam, Kancheepuram, Tamilnadu 603 203, India. email: [email protected]
Get access

Summary

Individual increase in inbreeding coefficients (ΔFi) has been recommended as an alternate measure of inbreeding. It can account for the differences in pedigree knowledge of individual animals and avoids overestimation due to increased number of known generations. The effect of inbreeding (F) and equivalent inbreeding (EF) calculated from ΔFi, on growth traits were studied in Nilagiri and Sandyno flocks of sheep. The study was based on data maintained at the Sheep Breeding Research Station, Sandynallah. The pedigree information and equivalent number of generations were less in Sandyno compared with Nilagiri sheep. The average F and EF for the Nilagiri population were 2.17 and 2.44, respectively and the corresponding values for Sandyno sheep were 0.83 and 0.84, respectively. The trend of inbreeding over years in both the populations indicated that EF was higher during earlier generations when pedigree information was shallow. Among the significant effects of inbreeding, the depression in growth per 1 percent increase in inbreeding ranged from 0.04 kg in weaning weight to 0.10 kg in yearling weight. In general, more traits were affected by inbreeding in Nilagiri sheep, in which greater regression of growth traits was noticed with F compared with EF. Higher values of EF than F in earlier generations in both the populations indicate that EF avoided the potential overestimation of inbreeding coefficient during recent generations. In the Sandyno population, the magnitude of depression noticed among growth traits with significant effects of inbreeding was higher. The differences in response to F and EF noticed in the two populations and possible causes for the trait wise differences in response to F and EF are appropriately discussed.

Résumé

L'accroissement individuel des coefficients de consanguinité (ΔFi) a été recommandé comme une mesure alternative de la consanguinité du fait qu'il tient compte des différences dans la connaissance que l'on a de la généalogie des animaux individuels et vu qu'il évite la surestimation résultant d'un plus grand nombre de générations connues. L'effet de la consanguinité (F) et de la consanguinité équivalente (EF), celles-ci calculées à partir de ΔFi, sur les paramètres de croissance a été étudié dans des troupeaux de moutons Nilagiri et Sandyno. L'étude s'est basée sur des données conservées à la Station de Recherche pour l'Amélioration des Ovins (Sandynallah). La généalogie était moins connue et le nombre équivalent de générations était plus faible pour les moutons Sandyno que pour les moutons Nilagiri. Les valeurs moyennes de F et de EF pour la population Nilagiri ont été respectivement de 2,17 et 2,44, avec les valeurs correspondantes pour les moutons Sandyno ayant été respectivement de 0,83 et 0,84. Dans les deux populations, l'évolution suivie au cours des années par la consanguinité montre que EF était plus élevée dans les premières générations, pour lesquelles moins d'information sur la généalogie était disponible. Parmi les effets significatifs de la consanguinité, la dépression de la croissance a varié de 0,04 kg pour le poids au sevrage à 0,10 kg pour le poids à un an de vie pour chaque 1 pour cent d'augmentation de la consanguinité. En général, les caractères affectés par la consanguinité ont été plus nombreux chez les moutons Nilagiri, pour lesquels une plus forte dépression des paramètres de croissance avec F qu'avec EF a été observée. L'obtention de valeurs plus élevées pour EF que pour F dans les premières générations des deux populations révèle que EF a évité la possible surestimation du coefficient de consanguinité dans les générations récentes. La dépression de la croissance par l'effet significatif de la consanguinité a été plus forte dans la population Sandyno. Les différences décelées dans les deux populations pour ce qui est de la réponse à F et à EF et les causes possibles de ces différences sont dûment discutées.

Resumen

El incremento individual de los coeficientes de endogamia (ΔFi) ha sido recomendado como una medida alternativa de la endogamia ya que tiene en cuenta las diferencias en el conocimiento que se tiene de la genealogía de animales individuales y evita la sobreestimación debida a un mayor número de generaciones conocidas. El efecto de la endogamia (F) y de la endogamia equivalente (EF), calculadas a partir de ΔFi, sobre los parámetros de crecimiento fue estudiado en rebaños de ovejas Nilagiri y Sandyno. El estudio se basó en datos conservados en la Estación de Investigación para la Mejora del Ganado Ovino (Sandynallah). Se dispuso de menos información sobre la genealogía y el número equivalente de generaciones fue menor para las ovejas Sandyno que para las ovejas Nilagiri. Los valores medios de F y EF para la población Nilagiri fueron de 2,17 y 2,44, respectivamente, y los valores correspondientes para las ovejas Sandyno fueron de 0,83 y 0,84, respectivamente. En ambas poblaciones, la evolución seguida a lo largo de los años por la endogamia hizo ver que EF era mayor en las generaciones tempranas, en las que la información sobre la genealogía fue escasa. Entre los efectos significativos de la endogamia, la depresión del crecimiento varió de 0,04 kg en el peso al destete a 0,10 kg en el peso al año de vida por cada 1 por ciento de incremento de la endogamia. En general, fueron más los caracteres que se vieron afectados por la endogamia en las ovejas Nilagiri, en las cuales se observó una mayor depresión de los parámetros de crecimiento con F que con EF. La detección de mayores valores para EF que para F en generaciones tempranas de ambas poblaciones indica que EF evitó la posible sobreestimación del coeficiente de endogamia en generaciones recientes. La depresión detectada en parámetros de crecimiento por un efecto significativo de la endogamia fue mayor en la población Sandyno. Se discuten debidamente las diferencias advertidas en las dos poblaciones en la respuesta a F y EF y las posibles causas de estas diferencias.

Type
Research Article
Copyright
Copyright © Food and Agriculture Organization of the United Nations 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, R.M. 1982. Sheep and goat breeds of India. FAO Animal Production and Health Paper, 30, Rome, Italy, FAO.Google Scholar
Akhtar, P., Khan, M.S., Mohiuddin, G. & Abdullah, M. 2000. Effect of inbreeding on different performance traits of Hissardale sheep in Pakistan. Pak. Vet. J. 20: 169172.Google Scholar
Analla, M., Montilla, J.M. & Serradilla, J.M. 1998. Analyses of lamb weight and ewe litter size in various lines of Spanish Merino sheep. Small Rum. Res. 29: 255259.Google Scholar
Bhatia, S. & Arora, L. 2005. Biodiversity and conservation of Indian sheep genetic resources – an overview. Asian Australas. J. Anim. Sci. 18: 13871402.CrossRefGoogle Scholar
Boujenane, I. & Chami, A. 1997. Effects of inbreeding on reproduction, weights and survival of Sardi and Beni Guil sheep. J. Anim. Breed. Genet. 114: 2331.CrossRefGoogle ScholarPubMed
Casellas, J., Piedrafita, J., Caja, G. & Varona, L. 2009. Analysis of founder-specific inbreeding depression on birth weight in Ripollesa lambs. J. Anim. Sci. 87: 7279.Google Scholar
Cassell, B.G., Adamec, V. & Pearson, R.E. 2003. Effects of incomplete pedigree on estimates of inbreeding and inbreeding depression for days to first service and summit milk yield in Holsteins and Jerseys. J. Dairy Sci. 86: 29672976.CrossRefGoogle ScholarPubMed
Dorostkar, M., Faraji Arough, H., Shodja, J., Rafat, S.A., Rokouei, M. & Esfandyari, H. 2012. Inbreeding and inbreeding depression in Iranian Moghani sheep breed. J. Agric. Sci. Technol. 14: 549556.Google Scholar
Ercanbrack, S.K. & Knight, A.D. 1981. Weaning trait comparison among inbred lines and selected noninbred and randomly bred control groups of Rambouillet, Targhee, and Columbia sheep. J. Anim. Sci. 52: 977988.CrossRefGoogle ScholarPubMed
Ercanbrack, S.K. & Knight, A.D. 1991. Effects of inbreeding on reproduction and wool production of Rambouillet, Targhee and Columbia ewes. J. Anim. Sci. 69: 47344744.Google Scholar
Falconer, D.S. & Mackay, T.F.C. 1996. Introduction to quantitative genetics, 4th edition. Harlow, Essex, UK, Longmans Green.Google Scholar
Gonzalez-Recio, O., de Maturana, E.L. & Gutierrez, J.P. 2007. Inbreeding depression on female fertility and calving ease in Spanish dairy cattle. J. Dairy Sci. 90: 57445752.CrossRefGoogle ScholarPubMed
Gowane, G.R., Prakash, V., Chopra, A. & Prince, L.L.L. 2013. Population structure and effect of inbreeding on lamb growth in Bharat Merino sheep. Small Rum. Res. 114: 7279.Google Scholar
Gutierrez, J.P. & Goyache, F. 2005. A note on ENDOG: a computer program for analyzing pedigree information. J. Anim. Breed. Genet. 122: 172176.Google Scholar
Gutiérrez, J.P., Cervantes, I., Molina, A., Valera, M. & Goyache, F. 2008. Individual increase in inbreeding allows estimating realised effective sizes from pedigrees. Genet. Sel. Evol. 40: 359378.Google Scholar
Gutierrez, J.P., Cervantes, I. & Goyache, F. 2009. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 126: 327332.Google Scholar
Hussain, A., Akhtar, P., Ali, S., Younas, M. & Shafiq, M. 2006. Effect of inbreeding on pre-weaning growth traits in Thalli sheep. Pak. Vet. J. 26: 138140.Google Scholar
Iyue, M. 1993. Genetic and phenotypic evaluation of Nilagiri synthetics. Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamilnadu, India. (PhD thesis).Google Scholar
Kumar, S., Prince, L.L., Mishra, A.K. & Arora, A.L. 2008. Estimation of inbreeding in Chokla sheep. Indian Vet. J. 85: 12841286.Google Scholar
Lamberson, R.W. & Thomas, D.L. 1984. Effects of inbreeding in sheep: a review. Anim. Breed. Abstr. 52: 287297.Google Scholar
Leroy, G. 2014. Inbreeding depression in livestock species: review and meta-analysis. Anim. Genet. 45: 618628.CrossRefGoogle ScholarPubMed
Lutaaya, E., Misztal, I., Bertrand, J.K. & Mabry, J.W. 1999. Inbreeding in populations with incomplete pedigree. J. Anim. Breed. Genet. 116: 475480.Google Scholar
Maignel, L., Boichard, D. & Verrier, E. 1996. Genetic variability of French dairy breeds estimated from pedigree information. Interbull Bull. 14: 4954.Google Scholar
Mandal, A.K., Pant, P., Rout, P.K., Singh, S.A. & Roy, R. 2002. Influence of inbreeding on growth traits of Muzaffarnagari sheep. Indian J. Anim. Sci. 72: 988990.Google Scholar
Negussie, E., Abegaz, S. & Rege, J.O.E. 2002. Genetic trend and effects of inbreeding on growth performance of tropical fat-tailed sheep. In Proc. 7th World Congress on Genetics Applied to Livestock Production, Montpellier, France, 19–23 August 2002, pp. 14.Google Scholar
Norberg, E. & Sorensen, A.C. 2007. Inbreeding trend and inbreeding depression in the Danish populations of Texel, Shropshire, and Oxford Down. J. Anim. Sci. 85: 299304.CrossRefGoogle ScholarPubMed
Panetto, J.C.C., Gutiérrez, J.P., Ferraz, J.B.S., Cunha, D.G. & Golden, B.L. 2010. Assessment of inbreeding depression in a Guzerat dairy herd: effects of individual increase in inbreeding coefficients on production and reproduction. J. Dairy Sci. 93: 49024912.Google Scholar
Pedrosa, V.B., Santana, M.L. Jr., Oliveira, P.S., Eler, J.P. & Ferraz, J.B.S. 2010. Population structure and inbreeding effects on growth traits of SantaInês sheep in Brazil. Small Rum. Res. 93: 135139.Google Scholar
Santana, M.L. Jr., Oliveira, P.S., Eler, J.P., Gutierrez, J.P. & Ferraz, J.B.S. 2012. Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds. J. Anim. Sci. 90: 99108.Google Scholar
Smith, L.A., Cassel, B.G. & Pearson, R.E. 1998. The effects of inbreeding on the lifetime performance of dairy cattle. J. Dairy Sci. 81: 27292737.CrossRefGoogle ScholarPubMed
Venkataramanan, R., Subramanian, A., Sivaselvam, S.N., Sivakumar, T., Sreekumar, C., Anilkumar, R. & Iyue, M. 2013. Pedigree analysis of the Nilagiri sheep of South India. Anim. Genet. Resour. 53: 1118.CrossRefGoogle Scholar
Wiener, G., Lee, G.J. & Woolliams, J.A. 1992. Effects of rapid inbreeding and of crossbreeding of inbred lines on the body weight growth of sheep. Anim. Prod. 55: 8999.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97159.Google Scholar
Zadeh, N.G.H. 2012. Inbreeding effects on body weight traits of Iranian Moghani sheep. Archiv Tierzucht 55: 171178.Google Scholar