Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:14:08.987Z Has data issue: false hasContentIssue false

Genetic and Nongenetic Variation in the AB0 Agglutinin Levels of Plasma, Saliva and Milk

Published online by Cambridge University Press:  01 August 2014

R. Barrantes
Affiliation:
Department of Genetics, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
F.M. Salzano*
Affiliation:
Department of Genetics, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
*
Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Caixa Postal 1953, 90000 Porto Alegre, RS, Brazil

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The agglutinin levels of 250 parturient women and their newborn babies were studied and the modifying influence of 16 variables evaluated. The most important factor in this variability is the AB0 phenotype. The agglutinin titers are generally higher in milk than in plasma or saliva. Blacks always show salivary agglutinins in higher frequencies than Whites. Within each fluid the amount of anti-A and anti-B are always highly correlated (r 0.59-0.79). Associations were also observed between the titers in plasma and milk (r 0.25-0.30). The plasma and milk anti-A levels of the 0 mothers are correlated with those of their 0 children (r 0.28-0.37), but the anti-B are not. Socioeconomic conditions may affect the salivary anti-A and anti-B titers.

Type
Research Article
Copyright
Copyright © The International Society for Twin Studies 1978

Footnotes

* Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica.

References

REFERENCES

Barrantes, R., Salzano, F.M. 1978. Genetic and non-genetic influences in the ABH and Lea antigen levels of saliva and milk. Hum. Hered. (in press).Google Scholar
Bell, C.D., Fortwengler, H.P. 1971. Salivary anti-A and anti-B activity of group 0 males. Vox Sang., 21: 493508.Google Scholar
Boettcher, B. 1967. AB0 blood group agglutinins in saliva. Acta Haemat., 38: 351360.Google Scholar
Brandtzaeg, P., Fjellanger, I., Gjeruldsen, S.T. 1970. Human secretory immunoglobulins. Scand. J. Haemat., Suppl. 12: 183.Google Scholar
Callegari, S.M., Salzano, F.M., Peña, H.F. 1972. AB0 saliva and plasma agglutinins in twins. Acta Genet. Med. Gemellol. (Roma), 21: 287296.CrossRefGoogle Scholar
Campogrande, M., Trompeo, P. 1970. Immunoglobuline del latte materno e patrimonio immunitario neonatale. Min. Gin., 22: 1725.Google Scholar
Denborough, M.A., Downing H.J., McCrea, M.G. 1967. The AB0 system in milk and saliva. Austral. Ann. Med., 16: 320325.Google Scholar
Denborough, M.A., Downing, H.J. 1969. The incidence of anti-A and anti-B isoagglutinins in cord blood and maternal saliva. Brit. J. Haemat., 16: 111118.CrossRefGoogle ScholarPubMed
Fong, S.W., Qaqundah, B.Y., Taylor, W.F. 1974. Developmental patterns of AB0 isoagglutinins in normal children correlated with the effects of age, sex, and maternal isoagglutinins. Transfusion, 14: 551559.Google Scholar
Fudenberg, H.H., Pink, J.R.L., Stites, D.P., Wang, A.C. 1972. Basic Immunogenetics. New York: Oxford University Press.Google Scholar
Grundbacher, F.J. 1967. Quantity of hemolytic anti-A and anti-B in individuals of a human population: correlation with isoagglutinins and effects of the individual's age and sex. Z. Immunforsch., 134: 317349.Google Scholar
Grundbacher, F.J. 1976. Genetics of anti-A and anti-B levels. Transfusion, 16: 4855.Google Scholar
Jakobowicz, R., Graydon, J.J., Simmons, R.T. 1966. Observations on saliva agglutinins. Med. J. Austr., 1: 399401.Google Scholar
Jakobowicz, R., Ehrlich, M., Graydon, J.J. 1967. Crossreacting antibody and saliva agglutinins. Vox Sang., 12: 340353.Google Scholar
Kraus, F.W., Konno, J. 1963. Antibodies in saliva. Ann. N.Y. Acad. Sci., 106: 311329.Google Scholar
Kraus, F.W., Konno, J. 1965. The salivary secretion of antibody. Ala. J. Med. Sci., 2: 1522.Google ScholarPubMed
Marrack, J.R. 1948. Antibodies in milk. Brit. Med. Bull., 5: 187189.Google Scholar
Otten, C.M. 1966. Non-genetic variation in salivary isoagglutinin titers. J. Dent. Res., 45: 1223.Google Scholar
Palatnik, M., de Sä e Benevides, M.J., Salzano, F.M. 1969. ABH salivary secretion and White/Negro gene flow in a Brazilian population. Hum. Biol., 41: 8396.Google Scholar
Phansomboon, S. 1968. The incidence of anti-A and anti-B agglutinins in saliva of the Thai people. Vox Sang., 14: 396399.Google Scholar
Prokop, O., Uhlenbrock, G. 1969. Human Blood and Serum Groups. London: Maclaren and Sons.Google Scholar
Race, R.R., Sanger, R. 1975. Blood Groups in Man. Oxford: Blackwell.Google Scholar
Salzano, F.M. 1963. Blood groups and gene flow in Negroes from Southern Brazil. Acta Genet. (Basel), 13: 920.Google Scholar
Salzano, F.M., Suñé, M.V., Ferlauto, M. 1967. New studies on the relationship between blood groups and leprosy. Acta Genet. (Basel), 17: 530544.Google Scholar
Schicke, R., Schneeweiss, B., Rieger, A. 1965. Über das Vorkommen von Iso-Agglutininen des AB0-Systems in der Milch von O-Müttern. Pädiatrie u. Grenzgeb., 4: 115125.Google Scholar
Thomaidis, T., Agathopoulus, A., Matsaniotis, N. 1969. Natural isohemagglutinin production by the fetus. J. Pediatrics, 74: 3948.Google Scholar
Toivanen, P., Hirvonen, T. 1969. Iso- and heteroag-glutinins in human fetal and neonatal sera. Scand. J. Haemat., 6: 4248.CrossRefGoogle Scholar
Tomasi, T.B. 1969. On the mechanisms of transport and biological significance of antibodies in external secretions. Arthr. and Rheum., 12: 4550.Google Scholar
Tomasi, T.B., Tan, E.M., Solomon, A., Prendergast, R.A. 1965. Characteristics of an immune system common to certain external secretions. J. Exp. Med., 121: 101124.Google Scholar
Wilson, R.M., Green, G.E. 1964. Genetic aspects of salivary secretion of isoagglutinins. Proc. Soc. Exp. Biol., 115: 982985.Google Scholar