Background:
Bipolar affective disorder (BP) is a severe mood disorder characterized by alternating periods of mania and depression, with estimates of lifetime prevalence up to 4%.
Methods:
Studying BP families, genetic linkage analysis has been used to identify susceptibility loci. Positional cloning and association analysis was used to identify the susceptibility gene. Microarray analysis of gene expression profiles of mice treated with anti-manic drugs was performed.
Results:
The cadherin gene FAT was identified by positional cloning. Association with bipolar disorder was seen in two case-control cohorts with a family history of psychiatric illness, and in two cohorts of parent-proband trios where association was identified among bipolar cases who had exhibited psychosis. Pooled analysis further supported association (P = 0.0002, odds ratio = 2.31, 95% confidence interval: 1.49–3.59). Expression of FAT, and putative interacting proteins beta-catenin and the Ena/VASP proteins were investigated in mice following administration of the mood-stabilizing drugs, lithium and valproate. FAT was significantly downregulated (P = 0.027), and Catnb and Enah were significantly upregulated (P = 0.0003 and 0.005), in response to lithium. Expression of genes encoding murine homologs of the FAT-interacting proteins was investigated by microarray analysis, with eight genes showing significantly altered expression in response to lithium (binomial P = 0.004).
Conclusions:
Together, these data provide convergent evidence that FAT and its protein partners may be components of a molecular pathway involved in susceptibility to bipolar disorder. Genetic and genomics approaches may provide a means to better understanding the genes involved in BP onset and progression.