Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T02:58:56.312Z Has data issue: false hasContentIssue false

Cerium Anomalies and Paleoredox

Published online by Cambridge University Press:  02 January 2021

Rosalie Tostevin
Affiliation:
University of Oxford

Summary

Ce anomalies track changes in oxygen availability due to the anomalous redox-sensitivity of Ce compared with the other rare earth elements. The proxy systematics have been calibrated experimentally as well as in modern anoxic water bodies. Ce anomalies are unique because they track intermediate manganous conditions, rather than fully anoxic conditions. In addition, they are sensitive to local–regional redox conditions, and can be analysed in chemical sediments such as carbonate rocks. This makes them especially useful as a tool to track local oxygen distribution in shallow shelf environments, where biodiversity is highest. This review focusses on the systematics of the Ce anomaly proxy, the preservation and extraction of the signal in sedimentary rocks, and the potential applications of the proxy.
Get access
Type
Element
Information
Online ISBN: 9781108847223
Publisher: Cambridge University Press
Print publication: 25 February 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagi, T., Edanami, K., 2017. Sources of rare earth elements in shells and soft tissues of bivalves from Tokyo Bay. Mar. Chem. 194, 5562. https://doi.org/10.1016/j.marchem.2017.02.009CrossRefGoogle Scholar
Alibo, D. S., Nozaki, Y., 1999. Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 63, 363–72. https://doi.org/10.1016/S0016-7037(98)00279–8CrossRefGoogle Scholar
Azmy, K., Brand, U., Sylvester, P., Gleeson, S. A., Logan, A., Bitner, M. A., 2011. Biogenic and abiogenic low-Mg calcite (bLMC and aLMC): Evaluation of seawater-REE composition, water masses and carbonate diagenesis. Chem. Geol. 280, 180–90. https://doi.org/10.1016/j.chemgeo.2010.11.007Google Scholar
Banner, J. L., Hanson, G. N., Meyers, W. J., 1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian): Implications for REE mobility during carbonate diagenesis. J. Sediment. Res. 58, 415–32.Google Scholar
Bau, M., 1999. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 63, 6777.CrossRefGoogle Scholar
Bau, M., Dulski, P., 1999. Comparing yttrium and rare earths in hydrothermal fluids from the Mid-Atlantic Ridge: Implications for Y and REE behaviour during near-vent mixing and for the Y/Ho ratio of Proterozoic seawater. Chem. Geol. 155, 7790.CrossRefGoogle Scholar
Bau, M., Koschinsky, A., 2009. Oxidative scavenging of cerium on hydrous Fe oxide: Evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts. Geochem. J. 43, 3747.Google Scholar
Bau, M., Möller, P., Dulski, P., 1997. Yttrium and lanthanides in eastern Mediterranean seawater and their fractionation during redox-cycling. Mar. Chem. 56, 123–31. https://doi.org/10.1016/S0304-4203(96)00091–6CrossRefGoogle Scholar
Bau, M., Schmidt, K., Koschinsky, A., Hein, J., Kuhn, T., Usui, A., 2014. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem. Geol. 381, 19.CrossRefGoogle Scholar
Bratina, B. J., Stevenson, B. S., Green, W. J., Schmidt, T. M., 1998. Manganese reduction by microbes from oxic regions of the Lake Vanda (Antarctica) water column. Appl. Environ. Microbiol. 64, 3791–7.CrossRefGoogle ScholarPubMed
Byrne, R. H., Kim, K.-H., 1990. Rare earth element scavenging in seawater. Geochim. Cosmochim. Acta 54, 2645–56. https://doi.org/10.1016/0016–7037(90)90002–3CrossRefGoogle Scholar
Cao, C., Liu, X.-M., Bataille, C. P., Liu, C., 2020. What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments. Chem. Geol. 532, 119413. https://doi.org/10.1016/j.chemgeo.2019.119413CrossRefGoogle Scholar
Clarkson, M. O., Poulton, S. W., Guilbaud, R., Wood, R. A., 2014. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–22.Google Scholar
Clement, B. G., Luther, G. W. III, Tebo, B. M., 2009. Rapid, oxygen-dependent microbial Mn(II) oxidation kinetics at sub-micromolar oxygen concentrations in the Black Sea suboxic zone. Geochim. Cosmochim. Acta 73, 1878–89. https://doi.org/10.1016/j.gca.2008.12.023CrossRefGoogle Scholar
Daye, M., Klepac-Ceraj, V., Pajusalu, M., Rowland, S., Farrell-Sherman, A., Beukes, N., Tamura, N., Fournier, G., Bosak, T., 2019. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–14. https://doi.org/10.1038/s41586-019–1804-0CrossRefGoogle ScholarPubMed
De Baar, H. J. W., German, C. R., Elderfield, H., Van Gaans, P., 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta 52, 1203–19. https://doi.org/10.1016/0016–7037(88)90275-XGoogle Scholar
De Carlo, E. H., 2000. Rare earth element fractionation in hydrogenetic Fe-Mn crusts: The influence of carbonate complexation and phosphatization on Sm/Yb ratios. Soc. Sediment. Geol. 66, 271–85.Google Scholar
De Carlo, E. H., Green, W. J., 2002. Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochim. Cosmochim. Acta 66, 1323–33. https://doi.org/10.1016/S0016-7037(01)00861–4CrossRefGoogle Scholar
Edmonds, H. N., German, C. R., 2004. Particle geochemistry in the rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 68, 759–72.Google Scholar
Fowler, S., Hamilton, T., Peinert, R., La Rosa, J., Teyssie, J., 1992. The vertical flux of rare earth elements in the northwestern Mediterranean. In Martin, J. M. and Barth, H., eds., EROS 2000 (European River Ocean System): Proceedings of the Third Workshop on the North-West Mediterranean Sea. Water Pollution Research Reports, 28. Brussels: Commission of the European Communities, 401–12.Google Scholar
German, C. R., Elderfield, H., 1990a. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 5, 823–33. https://doi.org/199010.1029/PA005i005p00823CrossRefGoogle Scholar
German, C. R., Elderfield, H., 1990b. Rare earth elements in the NW Indian Ocean. Geochim. Cosmochim. Acta 54, 1929–40. https://doi.org/10.1016/0016–7037(90)90262-JCrossRefGoogle Scholar
German, C. R., Elderfield, H., 1989. Rare earth elements in Saanich Inlet, British Columbia, a seasonally anoxic basin. Geochim. Cosmochim. Acta 53, 2561–71. https://doi.org/10.1016/0016–7037(89)90128–2CrossRefGoogle Scholar
German, C. R., Holliday, B. P., Elderfield, H., 1991. Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochim. Cosmochim. Acta 55, 3553–8. https://doi.org/10.1016/0016–7037(91)90055-ACrossRefGoogle Scholar
Haley, B. A., Klinkhammer, G. P., McManus, J., 2004. Rare earth elements in pore waters of marine sediments. Geochim. Cosmochim. Acta 68, 1265–79. https://doi.org/10.1016/j.gca.2003.09.012Google Scholar
Haley, B. A., Klinkhammer, G. P., Mix, A. C., 2005. Revisiting the rare earth elements in foraminiferal tests. Earth Planet. Sci. Lett. 239, 7997. https://doi.org/10.1016/j.epsl.2005.08.014Google Scholar
Hood, A. vS., Planavsky, N. J., Wallace, M. W., Wang, X. , 2018. The effects of diagenesis on geochemical paleoredox proxies in sedimentary carbonates. Geochim. Cosmochim. Acta 232, 265–87. https://doi.org/10.1016/j.gca.2018.04.022CrossRefGoogle Scholar
Hood, A. vS., Wallace, M. W., 2014. Marine cements reveal the structure of an anoxic, ferruginous Neoproterozoic ocean. J. Geol. Soc. 171(6), 741–44.CrossRefGoogle Scholar
Jacobs, L., Emerson, S., Huested, S. S., 1987. Trace metal geochemistry in the Cariaco Trench. Deep Sea Res. Part Oceanogr. Res. Pap. 34, 965–81.Google Scholar
Johnson, K. S., Berelson, W. M., Coale, K. H., Coley, T. L., Elrod, V. A., Fairey, W. R., Iams, H. D., Kilgore, T. E., Nowicki, J. L., 1992. Manganese flux from continental margin sediments in a transect through the oxygen minimum. Science 257, 1242–5. https://doi.org/10.1126/science.257.5074.1242CrossRefGoogle Scholar
Kato, Y., Kano, T., Kunugiza, K., 2002. Negative Ce anomaly in the Indian banded iron formations: Evidence for the emergence of oxygenated deep-sea at 2.9–2.7 Ga. Resour. Geol. 52, 101–10. https://doi.org/10.1111/j.1751–3928.2002.tb00123.xGoogle Scholar
Kato, Y., Ohta, I., Tsunematsu, T., Watanabe, Y., Isozaki, Y., Maruyama, S., Imai, N., 1998. Rare earth element variations in mid-Archean banded iron formations: Implications for the chemistry of ocean and continent and plate tectonics. Geochim. Cosmochim. Acta 62, 3475–97. https://doi.org/10.1016/S0016-7037(98)00253–1CrossRefGoogle Scholar
Kim, J.-H., Torres, M. E., Haley, B. A., Kastner, M., Pohlman, J. W., Riedel, M., Lee, Y.-J., 2012. The effect of diagenesis and fluid migration on rare earth element distribution in pore fluids of the northern Cascadia accretionary margin. Chem. Geol. 291, 152–65. https://doi.org/10.1016/j.chemgeo.2011.10.010Google Scholar
Klinkhammer, G. P., Bender, M. L., 1980. The distribution of manganese in the Pacific Ocean. Earth Planet. Sci. Lett. 46, 361–84. https://doi.org/10.1016/0012-821X(80)90051–5Google Scholar
Koeppenkastrop, D., De Carlo, E. H., 1992. Sorption of rare-earth elements from seawater onto synthetic mineral particles: An experimental approach. Chem. Geol. 95, 251–63.CrossRefGoogle Scholar
Koeppenkastrop, D., De Carlo, E. H., 1993. Uptake of rare earth elements from solution by metal oxides. Environ. Sci. Technol. 27, 17961802.CrossRefGoogle Scholar
Koeppenkastrop, D., De Carlo, E., Roth, M., 1991. A method to investigate the interaction of rare earth elements in aqueous solution with metal oxides. J. Radioanal. Nucl. Chem. 152, 337–46.Google Scholar
Lawrence, M. G., Greig, A., Collerson, K. D., Kamber, B. S., 2006. Rare earth element and yttrium variability in south east Queensland waterways. Aquat. Geochem. 12, 3972. https://doi.org/10.1007/s10498-005–4471-8CrossRefGoogle Scholar
Lawrence, M. G., Kamber, B. S., 2006. The behaviour of the rare earth elements during estuarine mixing – revisited. Mar. Chem. 100, 147–61. https://doi.org/10.1016/j.marchem.2005.11.007Google Scholar
Lenton, T. M., Boyle, R. A., Poulton, S. W., Shields-Zhou, G. A., Butterfield, N. J., 2014. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nat. Geosci. 7.4, 257–65.Google Scholar
Lewis, B., Landing, W., 1991. The biogeochemistry of manganese and iron in the Black Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 38, S773S803.Google Scholar
Li, F., Webb, G. E., Algeo, T. J., Kershaw, S., Lu, C., Oehlert, A. M., Gong, Q., Pourmand, A., Tan, X., 2019. Modern carbonate ooids preserve ambient aqueous REE signatures. Chem. Geol. 509, 163–77. https://doi.org/10.1016/j.chemgeo.2019.01.015CrossRefGoogle Scholar
Liu, X.-M., Hardisty, D. S., Lyons, T. W., Swart, P. K., 2019. Evaluating the fidelity of the cerium paleoredox tracer during variable carbonate diagenesis on the Great Bahamas Bank. Geochim. Cosmochim. Acta 248, 2542. https://doi.org/10.1016/j.gca.2018.12.028CrossRefGoogle Scholar
Macleod, K. G., Irving, A. J., 1996. Correlation of cerium anomalies with indicators of paleoenvironment. J. Sediment. Res. 66, 948–55.Google Scholar
Mitra, A., Elderfield, H., Greaves, M., 1994. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar. Chem. 46, 217–35.CrossRefGoogle Scholar
Moffett, J. W., 1990. Microbially mediated cerium oxidation in sea water. Nature 345, 421–3. https://doi.org/10.1038/345421a0CrossRefGoogle Scholar
Möller, P., Bau, M., 1993. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet. Sci. Lett. 117, 671–6. https://doi.org/10.1016/0012-821X(93)90110-UGoogle Scholar
Nothdurft, L. D., Webb, G. E., Kamber, B. S., 2004. Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones. Geochim. Cosmochim. Acta 68, 263–83. https://doi.org/10.1016/S0016-7037(03)00422–8CrossRefGoogle Scholar
O’Connell, B., Wallace, M. W., Hood, A. vS., Lechte, M. A., Planavsky, N. J., 2020. Iron-rich carbonate tidal deposits, Angepena Formation, South Australia: A redox-stratified Cryogenian basin. Precambrian Res. 342, 105668. https://doi.org/10.1016/j.precamres.2020.105668Google Scholar
Ohta, A., Kawabe, I., 2001. REE (III) adsorption onto Mn dioxide (MnO2) and Fe oxyhydroxide: Ce (III) oxidation by MnO2. Geochim. Cosmochim. Acta 65, 695703.CrossRefGoogle Scholar
Planavsky, N., Bekker, A., Rouxel, O. J., Kamber, B., Hofmann, A., Knudsen, A., Lyons, T. W., 2010. Rare earth element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim. Cosmochim. Acta 74, 63876405. https://doi.org/10.1016/j.gca.2010.07.021CrossRefGoogle Scholar
Pourmand, A., Dauphas, N., Ireland, T. J., 2012. A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and post-Archean Australian Shale (PAAS) abundances. Chem. Geol. 291, 3854. https://doi.org/10.1016/j.chemgeo.2011.08.011CrossRefGoogle Scholar
Quinn, K. A., Byrne, R. H., Schijf, J., 2006. Sorption of yttrium and rare earth elements by amorphous ferric hydroxide: Influence of solution complexation with carbonate. Geochim. Cosmochim. Acta 70, 4151–65. https://doi.org/10.1016/j.gca.2006.06.014Google Scholar
Saager, P. M., De Baar, H. J. W., Burkill, P. H., 1989. Manganese and iron in Indian Ocean waters. Geochim. Cosmochim. Acta 53, 2259–67. https://doi.org/10.1016/0016–7037(89)90348–7CrossRefGoogle Scholar
Saager, P. M., Schijf, J., De Baar, H. J. W., 1993. Trace-metal distributions in seawater and anoxic brines in the eastern Mediterranean Sea. Geochim. Cosmochim. Acta 57, 1419–32. https://doi.org/10.1016/0016–7037(93)90003-FGoogle Scholar
Sherrell, R. M., Field, M. P., Ravizza, G., 1999. Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9 45˚N, East Pacific Rise. Geochim. Cosmochim. Acta 63, 1709–22.Google Scholar
Shields, G., Stille, P., 2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies: An isotopic and REE study of Cambrian phosphorites. Chem. Geol. 175, 2948. https://doi.org/10.1016/S0009-2541(00)00362–4Google Scholar
Shields, G., Webb, G., 2004. Has the REE composition of seawater changed over geological time? Chem. Geol. 204.1, 103–7.Google Scholar
Sholkovitz, E. R., Landing, W. M., Lewis, B. L., 1994. Ocean particle chemistry: The fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 58, 1567–79. https://doi.org/10.1016/0016–7037(94)90559–2CrossRefGoogle Scholar
Sunda, W. G., Huntsman, S. A., 1988. Effect of sunlight on redox cycles of manganese in the southwestern Sargasso Sea. Deep Sea Res. Part Oceanogr. Res. Pap. 35, 12971317.CrossRefGoogle Scholar
Tang, D., Shi, X., Wang, X., Jiang, G., 2016. Extremely low oxygen concentration in mid-Proterozoic shallow seawaters. Precambrian Res. 276, 145–57. https://doi.org/10.1016/j.precamres.2016.02.005Google Scholar
Tostevin, R., Mills, B. J. W., 2020. Reconciling proxy records and models of Earth’s oxygenation during the Neoproterozoic and Palaeozoic. Interface Focus 10, 20190137. https://doi.org/10.1098/rsfs.2019.0137CrossRefGoogle ScholarPubMed
Tostevin, R., Shields, G. A., Tarbuck, G. M., He, T., Clarkson, M. O., Wood, R. A., 2016a. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem. Geol. 438, 146–62. https://doi.org/10.1016/j.chemgeo.2016.06.027CrossRefGoogle Scholar
Tostevin, R., Wood, R. A., Shields, G. A., Poulton, S. W., Guilbaud, R., Bowyer, F., Penny, A. M., He, T., Curtis, A., Hoffmann, K. H., Clarkson, M. O., 2016b. Low-oxygen waters limited habitable space for early animals. Nat. Commun. 7. https://doi.org/10.1038/ncomms12818CrossRefGoogle ScholarPubMed
Trefry, J. H., Presley, B. J., Keeney-Kennicutt, W. L., Trocine, R. P., 1984. Distribution and chemistry of manganese, iron, and suspended particulates in Orca Basin. Geo-Mar. Lett. 4, 125–30. https://doi.org/10.1007/BF02277083Google Scholar
Wallace, M. W., Hood, A. vS., Shuster, A., Greig, A., Planavsky, N. J., Reed, C. P. , 2017. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet. Sci. Lett. 466, 1219. https://doi.org/10.1016/j.epsl.2017.02.046CrossRefGoogle Scholar
Webb, G. E., Kamber, B. S., 2000. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Cosmochim. Acta 64, 1557–65. https://doi.org/10.1016/S0016-7037(99)00400–7Google Scholar
Webb, G. E., Nothdurft, L. D., Kamber, B. S., Kloprogge, J. T., Zhao, J.-X., 2009. Rare earth element geochemistry of scleractinian coral skeleton during meteoric diagenesis: A sequence through neomorphism of aragonite to calcite. Sedimentology 56, 1433–63. https://doi.org/10.1111/j.1365–3091.2008.01041.xCrossRefGoogle Scholar
Zaky, A. H., Brand, U., Azmy, K., Logan, A., Hooper, R. G., Svavarsson, J., 2016. Rare earth elements of shallow-water articulated brachiopods: A bathymetric sensor. Palaeogeogr. Palaeoclimatol. Palaeoecol. 461, 178–94. https://doi.org/10.1016/j.palaeo.2016.08.021Google Scholar
Zhang, K., Zhu, X.-K., Yan, B., 2015. A refined dissolution method for rare earth element studies of bulk carbonate rocks. Chem. Geol. 412, 8291. https://doi.org/10.1016/j.chemgeo.2015.07.027Google Scholar

Save element to Kindle

To save this element to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Cerium Anomalies and Paleoredox
Available formats
×

Save element to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Cerium Anomalies and Paleoredox
Available formats
×

Save element to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Cerium Anomalies and Paleoredox
Available formats
×