[1] N.H., Abel, Recherches sur la série …, J. für Math. (1826) pp. 311–319.
[2] F., Albiac and N., Kalton, Topics in Banach Space Theory, Berlin, Springer, 2006.
[3] M., Alessandri, Thèmes de Géométrie, Paris, Dunod, 1999.
[4] E., Amar, On the corona problem, J. Geometric Anal., 1 4 (1991) pp. 291–305.
[5] M., Andersson, Topics in Complex Analysis, Berlin, Springer, 1997.
[6] A., Argyros and R., Haydon, A hereditary indecomposable ∞-space that solves the scalar-plus-compact problem, Acta Math. 206, 4 (2011) pp. 1–54.
[7] J., Arias, Pointwise Convergence of Fourier Series,Lecture Notes in Mathematics No.1875, Berlin, Springer, 2002.
[8] M., Artin, Algebra, Englewood Cliffs, NJ, Prentice-Hall, 1991.
[9] W., Arveson, A Short Course on Spectral Theory, Berlin, Springer, 2002.
[10] W., ArvesonAutour du Centenaire Lebesgue, Panoramas et Synthèses no.18, Paris, Société Mathématique de France, 2004.
[11] J., Bak and D.J., Newman, Complex Analysis, Berlin, Springer, 1999.
[12] S., Banach, Sur le problème de la mesure, Fund. Math. 4 (1923) pp. 7–33.
[13] S., Banach, Un théorème sur les transformations biunivoques, Fund. Math. 6 (1924) pp. 236–239.
[14] S., Banach and A., Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes, Fund. Math. 6 (1924) pp. 244–277.
[15] N., Bary, A Treatise on Trigonometric Series, Vols. 1 & 2, Oxford, Pergamon Press, 1964.
[16] D., Bellay, La résolution de la conjecture de Littlewood, Mémoire de DEA (avec A. Bonami), Université d'Orléans, 2002.
[17] L., Bernal-Gonzàlez, Lineability of sets of nowhere analytic functions, J. Math. Anal. Appl. 340 (2008) pp. 1284–1295.
[18] B., Berndtsson, A., Chang and K. C., Lin, Interpolating sequences in the polydisk, Trans. Amer. Math. Soc. 302, 1 (1987) pp. 161–169.
[19] B., Berndtsson and T., Ransford, Analytic multifunctions, the ∂-equation, and a proof of the corona theorem, Pacific J. Math. 124, 1 (1986) pp. 57–72.
[20] P., Billinglsey, Ergodic Theory and Information, New York, John Wiley & Sons, Inc., 1965.
[21] P., Billingsley, Probability and Measure, 3rd edn, New York, JohnWiley & Sons, Inc., 1995.
[22] R., Blei, Analysis in Integer and Fractional Dimensions, Cambridge, Cambridge University Press, 2001.
[23] R., Blei and T.W., Kőrner, Combinatorial dimension and random sets, Israel J. Math. 47 (1984) pp. 65–74.
[24] R. P., Boas, A Primer of Real Functions, Carus Mathematical Monographs No. 13, Washington, D.C., Mathematical Association of America, 1996.
[25] S.V., Bočkarëv, Logarithmic growth of arithmetic means of Lebesgue functions of bounded orthonormal systems, Dokl. Akad. Nauk SSSR 223 (1975) pp.16–19. English translation in Soviet Math. Dokl. 16 (1975).
[26] P., du Bois-Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Änderungen in den kleinsten Intervallen, J. für Math. 79 (1875) p. 28.
[27] E., Bombieri and J., Bourgain, A remark on Bohr's inequality, Int. Math. Res. Notes (2004) pp. 4307–4330.
[28] J., Bourgain, On finitely generated closed ideals in H∞ (D), Ann. Inst. Fourier 35, 4 (1985) pp. 163–174.
[29] J., Bourgain, A problem of Rudin and Douglas on factorization, Pacific J. Math. 121, 1 (1986) pp. 47–50.
[30] J., Bourgain, On Λ(p)-subsets of squares, Israel J. Math. 67, 3 (1989) pp. 291–311.
[31] H., Brézis, Analyse Fonctionnelle, Paris, Dunod, 1994.
[32] A. M., Bruckner, J. B., Bruckner and B. S., Thomson, Real Analysis, Englewood Cliffs, NJ, Prentice-Hall, 1997.
[33] M., Bruckner and G., Petruska, Some typical results on bounded Baire one functions, Acta Math. Hung. 43, 3&4 (1984) pp. 325–333.
[34] B., Carl and I., Stephani, Entropy, Compactness and the Approximation of Operators, Cambridge, Cambridge University Press, 1990.
[35] L., Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958) pp. 921–930.
[36] L., Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. Math. 76 (1962) pp. 547–559.
[37] U., Cegrell, A generalization of the corona theorem in the unit disk, Math. Z. 203 (1990) pp. 255–261.
[38] Ch., Cellérier, Note sur les principes fondamentaux de lapos;analyse, Bull Sci. Mathématiques 14 (1890) pp. 143–160.
[39] K., Chandrasekharan, Classical Fourier Transforms, Berlin, Springer, 1989.
[40] Y. S., Chow and H., Teicher, Probability Theory, 3rd edn. Berlin, Springer, 2003.
[41] K. L., Chung, A Course in Probability Theory, New York, Academic Press, 2001.
[42] P., Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960) pp. 191–212.
[43] C., Cowen and B., McCluer, Composition Operators on Spaces of Analytic Functions, Boca Raton, FL, CRC Press, 1995.
[44] H., Davenport, On a theorem of P. Cohen, Mathematika 7, 2 (1960) pp. 93–97.
[45] A. M., Davie, The approximation problem for Banach spaces, Bull. London Math. Soc. 5 (1973) pp. 261–266.
[46] Ph. J., Davis, Interpolation and Approximation, London, Dover Publications, 1975.
[47] H., Delange, Généralisation du théorème de Ikehara, Ann. Sc. Éc. Norm. Sup. 3,71 (1954) pp. 213–242.
[48] J., Diestel, H., Jarchow and A., Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics No. 43, Cambridge, Cambridge University Press, 1995.
[49] J., Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Acta Sci. Math.(Szeged) 12 (1950) pp. 213–227.
[50] W. F., Donoghue, The lattice of invariant subspaces of a completely continuous quasinilpotent transformation, Pacific J. Math. 7 (1957), pp. 1031–1935.
[51] J., Dugundji, Topology, Boston, Allyn and Bacon, 1966.
[52] J. J., Duistermaat, Selfsimilarity of Riemannapos;s nondifferentiable function, Nieuw Archief voor Wiskunde 9 (1991) pp. 303–337.
[53] P., Duren, Theory of H p Spaces, 2nd edn, London, Dover Publications, 2000.
[54] P., Duren and A., Schuster, Bergman Spaces, Mathematical Surveys and Monographs No. 100, Providence, RI, AMS, 2004.
[55] A., Dvoretsky and P., Erdős, On power series diverging everywhere on the circle of convergence, Michigan Math. J. 3 (1955–1956) pp. 31–35.
[56] P., Enflo, A counterexample to the approximation property in Banach spaces, Acta Math. 130 (1973) pp. 309–317.
[57] P., Erdős, On a problem of Sidon in additive number theory, Acta Sci. Math.(Szeged) 15 (1953–1954) pp. 255–259.
[58] P., Erdős, A., Hildebrand, A., Odlyzko, P., Pudaite and B., Reznick, A very slowly convergent sequence, Math. Mag. 58 (1985) pp. 51–52.
[59] P., Erdős, A., Hildebrand, A., Odlyzko, P., Pudaite and B., Reznick, The asymptotic behaviour of a family of sequences, Pacific J. Math. 126, 2 (1985) pp. 227–241.
[60] P., Eymard and J. P., Lafon, Autour du nombre π, Paris, Hermann, 1999.
[61] C., Fefferman and E., Stein, H p spaces of several variables, Acta Math. 129 (1972) pp. 137–193.
[62] V., Ferenczi, A uniformly convex hereditarily indecomposable space, Israel J. Math. 102 (1997) pp. 199–225.
[63] V., Ferenczi, Operators on subspaces of hereditarily indecomposable spaces, Bull. London. Math. Soc. 29 (1997) pp. 338–344.
[64] T., Gamelin, Uniform Algebras, Englewood Cliffs, NJ, Prentice-Hall, 1969.
[65] T., Gamelin, Wolffapos;s proof of the corona theorem, Israel J. Math. 37 (1980) pp. 113–119.
[66] J., Garnett, Bounded Analytic Functions, revised first edition, Berlin, Springer, 2007.
[67] I., Gelfand, D., Raikov and G., Shilov, Commutative Normed Rings, Providence, RI, AMS Chelsea, 1964.
[68] J., Gerver, The differentiability of the Riemann function at certain rational multiples of π, Amer. J. Math. 92 (1970) pp. 33–55.
[69] T., Gowers, A new dichotomy for Banach spaces, Geom. Funct. Anal. 6 (1996) pp. 1083–1093.
[70] T., Gowers, A solution to the Schrőder–Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996) pp. 297–304.
[71] T., Gowers and B., Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993) pp. 851–874.
[72] V., Gurariy and W., Lusky, Geometry of Müntz Spaces and Related Questions, Lecture Notes in Mathematics No. 1870, Berlin, Springer, 2005.
[73] G. H., Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. London Math. Soc. 2,8 (1910) pp. 301–320.
[74] G. H., Hardy, Weierstrassapos;s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916) pp. 301–325.
[75] G. H., Hardy, Some famous problems of the theory of numbers, and in particular Waring's problem; an Inaugural Lecture delivered before the University of Oxford at the Clarendon Press, 1920.
[76] G. H., Hardy, Divergent Series, Oxford, Clarendon Press, 1949 (3rd edn, 1967).
[77] G. H., Hardy, Collected Papers, Oxford, Clarendon Press, 1974.
[78] G. H., Hardy, L'Apologie d'un Mathématicien, Paris, Belin, 1985.
[79] G. H., Hardy, Ramanujan, Providence, RI, AMS Chelsea, 1991.
[80] G. H., Hardy, Divergent Series, Providence, RI, AMS Chelsea, 1991.
[81] G. H., Hardy and J. E., Littlewood, Some problems of Diophantine approximation(II): The trigonometrical series associated with the elliptic θfunctions, Acta Math. 37 (1914) pp. 193–238.
[82] G. H., Hardy and J. E., Littlewood, A new solution of Waringapos;s problem, Quart. J. Math., 48 (1920) pp. 272–293.
[83] G. H., Hardy and J. E., Littlewood, A new proof of a theorem on rearrangements, J. London Math. Soc. 23 (1948) pp. 163–168.
[84] G. H., Hardy and S., Ramanujan, Asymptotic formulœ for the distribution of integers of various types, Proc. London Math. Soc. 2, 16 (1917) pp. 112–132.
[85] G. H., Hardy and S., Ramanujan, Asymptotic formulœ in combinatory analysis, Proc. London Math. Soc. 2,17 (1918) pp. 75–115.
[86] G. H., Hardy and M., Riesz, The General Theory of Dirichlet Series, Cambridge, Cambridge Tracts in Mathematics and Mathematical Physics No. 18, 1915.
[87] G. H., Hardy and E.M., Wright, An Introduction to the Theory of Numbers, 5th edn, Oxford, Oxford University Press, 1979.
[88] F., Hausdorff, Grundzüge der Mengenlehre, Berlin, Veit, 1914.
[89] E., Hlawka, J., Schoissengeier and H., Taschner, Geometric and Analytic Number Theory, Berlin, Springer, 1991.
[90] K., Hoffman, Banach Spaces of Analytic Functions, Englewood Cliffs, NJ, Prentice-Hall, 1962.
[91] M., Holschneider and Ph., Tchamitchian, Pointwise analysis of Riemannapos;s non differentiable function, Invent. Math. 105 (1991) pp. 157–175.
[92] L., Hőrmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967) pp. 943–949.
[93] V., Hugo, Oeuvres Poétiques, Vol. 2, Paris, Bibliothèque de la Pleacute;iade, 1967.
[94] A. E., Ingham, On Wienerapos;s method in Tauberian theorems, Proc. London Math. Soc. 2,38 (1933–1934) pp. 458–480.
[95] S., Itatsu, Differentiability of Riemannapos;s function, Proc. Japan. Acad. Ser.A 57 (1981) pp. 492–495.
[96] S., Jaffard, The spectrum of singularities of Riemannapos;s function, Revista Matematica Iberoamericana 12,2 (1996) pp. 441–460.
[97] S., Jaffard, Y., Meyer and R. D., Ryan, Wavelets, Tools for Science and Technology, Philadelphia, Society for Industrial and Applied Mathematics, 2001.
[98] F., John, Extremum problems with inequalities as subsidiary conditions, Couran Anniversary Volume, New York, Wiley-Interscience, 1948, pp. 187–204.
[99] M. I., Kadeč and M. G., Snobar, Some functionals over a compact Minkowski space, Math. Notes 10 (1971) pp. 694–696.
[100] J. P., Kahane, Sur certaines classes de séries de Fourier absolument convergentes, J. Math. Pures et Appliquées 35 (1956) pp. 249–259.
[101] J. P., Kahane, Séries de Fourier Absolument Convergentes, Berlin, Springer, 1970.
[102] N., Kalton, Spaces of compact operators, Math. Annal. 208 (1974) pp. 267–278.
[103] Y., Katznelson, Sur les fonctions opérant sur lapos;algèbre des séries de Fourier absolument convergentes, C.R.A.S. 247 (1958) pp. 404–406.
[104] Y., Katznelson, An Introduction to Harmonic Analysis, 3rd edn, Cambridge, Cambridge University Press, 2004.
[105] Y., Katznelson and K., Stromberg, Everywhere differentiable, nowhere monotone, functions, Am. Math. Monthly 81 (1974) pp. 349–354.
[106] P. B., Kennedy and P., Szüsz, On a bounded increasing power series, Proc. Amer. Math. Soc. (1966) pp. 580–581.
[107] S.V., Kisliakov, On spaces with small annihilators, Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 73 (1978) pp. 91–101.
[108] S.V., Kisliakov, Fourier coefficients of boundary values of functions analytic in the disc and in the bidisc, Trudy Matem. Inst. im. V.A. Steklova 155 (1981) pp. 77–94 (in Russian).
[109] I., Klemes, A note on Hardyapos;s inequality, Canad. Math. Bull. 36 (1993) pp. 442–448.
[110] H., Koch, Number Theory: Algebraic Numbers and Functions, Graduate Studies in Mathematics No. 24, Providence, RI, American Mathematical Society, 2000.
[111] S.V., Konyagin, On the Littlewood problem, Izv. A. N. SSSR, ser. mat. 45,2 (1981) pp. 243–265. English translation inMath. USSR-Izv. 18,2 (1982) pp. 205–225.
[112] P., Koosis, Lectures on H p Spaces, London, London Mathematical Society Lecture Notes Series 40, 1980.
[113] J., Korevaar, Tauberian Theory, a Century of Developments, Berlin, Springer, 2004.
[114] T., Kőrner, The Behaviour of Power Series on their Circle of Convergence, Lecture Notes in Mathematics No. 995, Berlin, Springer, 1983, pp. 56–94.
[115] P., Koszmider, Banach spaces of continuous functions with few operators, Math. Annal. 330 (2004) pp. 151–183.
[116] L., Kronecker, Quelques remarques sur la détermination des valeurs moyennes, C.R.A.S. 103 (1887) pp. 980–987.
[117] S., Lang, Real and Functional Analysis, 3rd edn, Berlin, Springer, 1993.
[118] P. D., Lax, Functional Analysis, Chichester, John Wiley & Sons, 2002.
[119] H., Lebesgue, Sur une généralisation de lapos;intégrale définie, C.R.A.S. 132 (1901) pp. 1025–1031.
[120] D., Li and H., Queffélec, Introduction à lapos;Étude des Espaces de Banach, Analyse et Probabilités, Cours spécialisé de la SMF No. 12, 2004.
[121] J., Lindenstrauss, Some aspects of the theory of Banach spaces, Adv. Math. 5 (1970) pp. 159–180.
[122] J., Lindenstrauss and L., Tzafriri, On the complemented subspaces problem, Israel. J. Math. 9 (1971) pp. 263–269.
[123] J., Lindenstrauss and L., Tzafriri, Classical Banach Spaces I, Sequence Spaces, Berlin, Springer, 1977.
[124] J. E., Littlewood, The converse of Abelapos;s theorem on power series, Proc. London Math. Soc. 2, 9 (1911) pp. 434–448.
[125] J. E., Littlewood, Littlewoodapos;s Miscellany, Cambridge, Cambridge University Press, 1986.
[126] G. G., Lorentz, Approximation of Functions, Providence, RI, AMS Chelsea, 1986.
[127] O. C., McGehee, L., Pigno and B., Smith, Hardyapos;s inequality and the L1-norm of exponential sums, Annals of Math. 113 (1981) pp. 613–618.
[128] R., Meise and D., Vogt, Introduction to Functional Analysis, Oxford, Clarendon Press, 1997.
[129] H. L., Montgomery, Ten Lectures on the Interface between Analytic Number Theory and Harmonic Analysis, CBMS No. 84, Providence, RI, American Mathematical Society, 1994.
[130] L., Mordell, The approximate functional formula, J. London Math. SocM. 1 (1926) pp. 68–72.
[131] F., Nazarov, Some remarks on the Smith–Pigno#x2013;McGehee proof of the Littlewoodapos;s conjecture, St. Petersburg Math. J. 7, 2 (1996) pp. 265–275.
[133] D. J., Newman, A simple proof ofWienerapos;s theorem, Proc. Amer. Math. Soc. 48, 1 (1975) pp. 264–265.
[134] D. J., Newman, Simple analytic proof of the prime number theorem, Amer. Math. Monthly 87, 9 (1980) pp. 693–696.
[135] D. J., Newman, Analytic Number Theory, Berlin, Springer, 1998.
[136] N., Nikolskii, Treatise on the Shift Operator, Berlin, Springer, 1986.
[137] N., Nikolskii, In search of the invisible spectrum, Ann. Inst. Fourier 49, 6 (1999) pp. 1925–1998.
[138] I., Niven, Irrational Numbers, Carus Mathematical Monographs No. 11, Washington, D.C., Mathematical Association of America, 2006.
[139] A. M., Olevskii, Fourier series and Lebesgue functions, Usp. Mat. Nauk 22, 3, 135 (1967) pp. 237–239.
[140] B., Osofsky and S., Adams, Some rotations of ℝ3, solution of problem 6102, Amer. Math. Monthly 85, 6 (1978) pp. 504–505.
[141] J., Partington, Interpolation, Identification and Sampling, Oxford, Oxford University Press, 1997.
[142] V., Peller and S.V., Khruscev, Hankel operators, best approximation and stationary Gaussian processes, Russian Math. Surveys 37 (1982), pp. 61–144.
[143] V., Peller, Hankel Operators and their Applications, Berlin, Springer, 2003.
[144] S. K., Pichorides, Norms of Exponential Sums, Publications Mathématiques dapos;Orsay No. 77–73, 1977.
[145] S. K., Pichorides, On the L1-norm of exponential sums, Ann. Inst. Fourier 30, 2 (1980) pp. 79–89.
[146] G., Pisier, Counterexamples to a conjecture of Grothendieck, Séminaire de lapos;École Polytechnique, 1982, pp. 1–35.
[147] G., Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge, Cambridge University Press, 1989.
[148] D., Pompeiu, Sur les fonctions dérivées, Math. Ann. 63 (1907) pp. 326–332.
[149] K., Prachar, Primzahlverteilung, Berlin, Springer, 1957.
[150] H., Queffélec, Dérivabilité de certaines sommes de seacute;ries de Fourier lacunaires,C.R.A.S. 273 série A (1971) pp. 291–293.
[151] H., Queffélec, Lapos;inégalité de Vinogradov et ses conséquences, Publications Mathématiques dapos;Orsay 81–08, exposé No. 4, pp. 1–15.
[152] H., Queffélec, Topologie, 4th edn, Paris, Dunod, 2012.
[153] H., Queffélec and C., Zuily, Analyse pour lapos;Agrégation, 4th edn, Paris, Dunod, 2013.
[154] J., Racine, Oeuvres Complètes, Vol. 1, Bibliothèque de la Pléiade, 1999.
[155] H., Rademacher, On the partition function p(n), Proc. London Math. Soc 2, 43 (1937) pp. 241–254.
[156] K., Rao, On a generalized corona problem, J. Analyse Math. 18 (1967) pp. 277–278.
[157] R., Remmert, Classical Topics in Complex Function Theory, Berlin, Springer, 1998.
[158] L., Rodriguez-Piazza, On the mesh condition for Sidon sets, pre-print.
[159] W., Rudin, Fourier Analysis on Groups, New York, Wiley-Interscience, 1962.
[160] W., Rudin, Real and Complex Analysis, 3rd edn, New York, McGraw-Hill, 1987.
[161] W., Rudin, Analyse Fonctionnelle, Paris, Ediscience International, 1995.
[162] W., Rudin, A converse to the high indices theorem, Proc. Amer. Math. Soc. 17 (1966) pp. 434&435.
[163] V., Runde, Lectures on Amenability, Lecture Notes in Mathematics No. 1774, Berlin, Springer, 2002.
[164] R., Salem, On a problem of Littlewood, Amer. J. Math. 77 (1955) pp. 535–540.
[165] D., Sarason, A remark on the Volterra operator, J. Math. Anal. Appl. 12 (1965), pp. 244–246.
[166] A., Selberg, Reflections around the Ramanujan centenary, in Collected Papers, Vol. 1, Berlin, Springer, 1989, pp. 695–701.
[167] N., Sibony, Prolongement analytique des fonctions holomorphes bornées, C.R.A.S. 275 (1972) pp. 973–976.
[168] E. M., Stein and R., Shakarchi, Complex Analysis, Princeton, NJ, Princeton University Press, 2003.
[169] E. M., Stein and R., Shakarchi, Real Analysis, Princeton, NJ, Princeton University Press, 2005.
[170] K., Stromberg, The Banach–Tarski paradox, Amer. Math. Monthly 86 (1979) pp. 151–161.
[171] S., Szarek, The finite-dimensional basis problem with an appendix on nets of Grassmann manifolds, Acta Math. 151 (1983) pp. 153–179.
[172] J., Tannery and J., Molk, Traité des Fonctions Elliptiques, Paris, Gauthier-Villars, 1893.
[173] A., Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. f. Mathematiku. Physik 8 (1897) pp. 273–277.
[174] G., Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, Cours spécialisé de la SMF, 1995.
[175] G., Tenenbaum and M., Mendés-France, Les nombres premiers, PUF, Collection Que sais-je?, 1997.
[176] E. C., Titchmarsh, The Theory of Functions, Oxford, Oxford Science Publications, 1932.
[177] E. C., Titchmarsh, The Theory of the Riemann Zeta Function, revised by D.R.Heath-Brown, Oxford, Oxford Science Publications, 1986.
[178] N., Tomczak#x2013;Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, Oxford, Longman-Wiley, 1983.
[179] S., Treil, Estimates in the corona theorem and ideals of H∞, a problem of T. Wolff, J. Analyse Math. 87 (2002) pp. 481–4950.
[180] B. S., Tsirelson, Not every Banach space contains lp or c0, Funct. Anal. Appl. 8 (1974) pp. 139#x2013;141.
[181] S., Uchiyama, On the mean modulus of trigonometric polynomials whose coefficients have random sign, Proc. Amer.Math. Soc. 16 (1965) pp. 1185–1190.
[182] W. A., Veech, A Second Course in Complex Analysis, San Francisco, CA, Benjamin, 1967.
[183] S., Wagon, The Banach–Tarski Paradox, Cambridge, Cambridge University Press, 1985.
[184] C. E., Weil, On nowhere monotone functions, Proc. Amer. Math. Soc. 56 (1976) pp. 388–389.
[185] A., Wells and B., Williams, Embeddings and Extensions in Analysis, Berlin, Springer, 1970.
[186] N., Wiener, Tauberian theorems, Annals of Math. 33 (1932) pp. 1–100.
[187] N., Wiener, The Fourier Integral and Certain of its Applications, Cambridge, Cambridge University Press, 1933 (republished by Dover in 1958).
[188] P., Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, Cambridge, Cambridge University Press, 1991.
[189] T., Wolff, Some theorems on vanishing mean oscillation thesis, University of California, Berkeley, CA 1979.
[190] T., Wolff, A refinement of the corona theorem, inLinear and Complex Analysis Problem Book, 199 Research Problems, Lecture Notes in Mathematics No.1043, Berlin, Springer, 1984, pp. 399–400.
[191] K., Yosida, Functional Analysis, Berlin, Springer, 1980.
[192] D., Zagier, Newmanapos;s short proof of the prime number theorem, Amer. Math. Monthly 104, 8 (1997) pp. 705–708.
[193] Z., Zalcwasser, Sur les polynômes associeés aux fonctions modulaires θ, Stud. Math. 7 (1937) pp. 16–35.
[194] M., Zippin, Extension of bounded linear operators, inHandbook of the Geometry of Banach Spaces, Vol. 2, Amsterdan, North-Holland, 2003, pp. 1703–1741.
[195] A., Zygmund, Smooth functions, Duke Math. J. 12 (1945), pp. 47–76.
[196] A., Zygmund, Trigonometric Series, 2nd edn, Cambridge, Cambridge University Press, 1959.