Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T05:01:08.868Z Has data issue: false hasContentIssue false

24 - Laser cooling and trapping of atoms

from Part III - Applications

Published online by Cambridge University Press:  05 December 2015

Philip H. Jones
Affiliation:
University College London
Onofrio M. Maragò
Affiliation:
Istituto per i Processi Chimico-Fisici, Consiglio Nazionale delle Ricerche (CNR-IPCF), Italy
Giovanni Volpe
Affiliation:
Bilkent University, Ankara
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Optical Tweezers
Principles and Applications
, pp. 498 - 523
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abo-Shaeer, J. R., Raman, C., Vogels, J. M., and Ketterle, W. 2001. Observation of vortex lattices in Bose–Einstein condensates. Science, 292, 476–9.CrossRefGoogle ScholarPubMed
Adams, C. S., Lee, H. J., Davidson, N., Kasevich, M., and Chu, S. 1995. Evaporative cooling in a crossed dipole trap. Phys. Rev. Lett., 74, 3577–80.CrossRefGoogle Scholar
Albiez, M., Gati, R., Fölling, J., et al. 2005. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett., 95, 010402.CrossRefGoogle Scholar
Andersen, M. F., Ryu, C., Cladé, P., et al. 2006. Quantized rotation of atoms from photons with orbital angular momentum. Phys. Rev. Lett., 97, 170406.CrossRefGoogle ScholarPubMed
Anderson, B. P., and Kasevich, M. A. 1998. Macroscopic quantum interference from atomic tunnel arrays. Science, 282, 1686–9.CrossRefGoogle ScholarPubMed
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science, 269, 198–201.CrossRefGoogle Scholar
Andreev, S. V., Balykin, V. I., Letokhov, V. S., and Minogin, V. G. 1981. Radiative slowing and reduction of the energy spread of a beam of sodium atoms to 1.5 K in an oppositely directed laser beam. JETP Lett., 34, 463–7.Google Scholar
Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N., and Cohen-Tannoudji, C. 1988. Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett., 61, 826–9.CrossRefGoogle Scholar
Bakr, W. S., Peng, A., Tai, M. E., et al. 2010. Probing the superfluid-to-Mott insulator transition at the single-atom level. Science, 329, 547–50.CrossRefGoogle ScholarPubMed
Balykin, V. I., Letokhov, V. S., and Sidorov, A. I. 1985. Radiative collimation of an atomic beam by two-dimensional cooling by laser beam. JETP Lett., 40, 1026–9.Google Scholar
Bardou, F., Bouchaud, J.-P., Aspect, A., and Cohen-Tannoudji, C. 2002. Lévy statistics and laser cooling: How rare events bring atoms to rest. Cambridge, UK: Cambridge University Press.Google Scholar
Barrett, M. D., Sauer, J. A., and Chapman, M. S. 2001. All-optical formation of an atomic Bose–Einstein condensate. Phys. Rev. Lett., 87, 010404.CrossRefGoogle ScholarPubMed
Bergamini, S., Darquié, B., Jones, M., et al. 2004. Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator. J. Opt. Soc. Am. B, 21, 1889–94.CrossRefGoogle Scholar
Bloch, I. 2005. Ultracold quantum gases in optical lattices. Nature Phys., 1, 23–30.CrossRefGoogle Scholar
Bloch, I., Dalibard, J., and Nascimb`ene, S. 2012. Quantum simulations with ultracold quantum gases. Nature Phys., 8, 267–76.CrossRefGoogle Scholar
Bogoliubov, N. 1947. On the theory of superfluidity. J. Phys. (U. S. S. R.), 11, 23–32.Google Scholar
Bohr, A°., and Mottelson, B. R. 1998. Nuclear structure. Vol. II: Nuclear deformations. Singapore: World Scientific Publishing.CrossRefGoogle Scholar
Bose, S. N. 1924. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26, 178–81.CrossRefGoogle Scholar
Boyer, V., Godun, R. M., Smirne, G., et al. 2006. Dynamic manipulation of Bose–Einstein condensates with a spatial light modulator. Phys. Rev. A, 73, 031402.CrossRefGoogle Scholar
Burger, S., Cataliotti, F. S., Fort, C., et al. 2001. Superfluid and dissipative dynamics of a Bose–Einstein condensate in a periodic optical potential. Phys. Rev. Lett., 86, 4447–50.CrossRefGoogle Scholar
Castin, Y., and Dalibard, J. 1991. Quantization of atomic motion in optical molasses. Europhys. Lett., 14, 761–7.CrossRefGoogle Scholar
Cataliotti, F. S., Burger, S., Fort, C., et al. 2001. Josephson junction arrays with Bose– Einstein condensates. Science, 293, 843–6.CrossRefGoogle ScholarPubMed
Cataliotti, F. S., Fallani, L., Ferlaino, F., et al. 2003. Superfluid current disruption in a chain of weakly coupled Bose–Einstein condensates. New J. Phys., 5, 71.CrossRefGoogle Scholar
Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A., and Ashkin, A. 1985. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55, 48–51.CrossRefGoogle ScholarPubMed
Chu, S., Bjorkholm, J. E., Ashkin, A., and Cable, A. 1986. Experimental observation of optically trapped atoms. Phys. Rev. Lett., 57, 314–7.CrossRefGoogle ScholarPubMed
Cohen-Tannoudji, C., and Guéry-Odelin, D. 2011. Advances in atomic physics. Singapore: World Scientific Publishing.
Cristiani, M., Morsch, O., Malossi, N., et al. 2004. Instabilities of a Bose–Einstein condensate in a periodic potential: An experimental investigation. Opt. Express, 12, 4–10.CrossRefGoogle Scholar
Dalibard, J., and Cohen-Tannoudji, C. 1989. Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models. J. Opt. Soc. Am. B, 6, 2023–45.CrossRefGoogle Scholar
Davidson, N., Lee, H. J., Adams, C. S., Kasevich, M., and Chu, S. 1995. Long atomic coherence times in an optical dipole trap. Phys. Rev. Lett., 74, 1311–14.CrossRefGoogle Scholar
Davis, K. B., Mewes, M.-O., Andrews, M. R., et al. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969–73.CrossRefGoogle Scholar
Deng, H., Haug, H., and Yamamoto, Y. 2010. Exciton-polariton Bose–Einstein condensation. Rev. Mod. Phys., 82, 1489–537.CrossRefGoogle Scholar
Dicke, R. H. 1953. The effect of collisions upon the Doppler width of spectral lines. Phys. Rev., 89, 472–3.CrossRefGoogle Scholar
Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases: Zweite abhandlung. Sitzungsber. Preuss. Akad. Wiss., 18-25, 3–14.Google Scholar
Fallani, L., De Sarlo, L., Lye, J. E., et al. 2004. Observation of dynamical instability for a Bose–Einstein condensate in a moving 1D optical lattice. Phys. Rev. Lett., 93, 140406.CrossRefGoogle Scholar
Fisher, M. P. A.,Weichman, P. B., Grinstein, G., and Fisher, D. S. 1989. Boson localization and the superfluid–insulator transition. Phys. Rev. B, 40, 546–70.CrossRefGoogle ScholarPubMed
Foot, C. J. 2005. Atomic physics. Oxford, UK: Oxford University Press.Google Scholar
Frese, D., Ueberholz, B., Kuhr, S., et al. 2000. Single atoms in an optical dipole trap: Towards a deterministic source of cold atoms. Phys. Rev. Lett., 85, 3777–80.CrossRefGoogle Scholar
Gaunt, A. L., and Hadzibabic, Z. 2012. Robust digital holography for ultracold atom trapping. Sci. Rep., 2, 721.CrossRefGoogle ScholarPubMed
Gaunt, A. L., Schmidutz, T. F., Gotlibovych, I., Smith, R. P., and Hadzibabic, Z. 2013. Bose–Einstein condensation of atoms in a uniform potential. Phys. Rev. Lett., 110, 200406.CrossRefGoogle Scholar
Gerbier, F., Fölling, S., Widera, A., Mandel, O., and Bloch, I. 2006. Probing number squeezing of ultracold atoms across the superfluid–Mott insulator transition. Phys. Rev. Lett., 96, 090401.CrossRefGoogle ScholarPubMed
Gommers, R., Denisov, S., and Renzoni, F. 2006. Quasiperiodically driven ratchets for cold atoms. Phys. Rev. Lett., 96, 240604.CrossRefGoogle ScholarPubMed
Greiner, M., Mandel, O., Esslinger, T., Hänsch, T. W., and Bloch, I. 2002. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature, 415, 39–44.CrossRefGoogle Scholar
Grimm, R., Weidemüller, M., and Ovchinnikov, Y. B. 2000. Optical dipole traps for neutral atoms. Adv. Atom. Mol. Opt. Phys., 95–170.Google Scholar
Guéry-Odelin, D., and Stringari, S. 1999. Scissors mode and superfluidity of a trapped Bose–Einstein condensed gas. Phys. Rev. Lett., 83, 4452–5.CrossRefGoogle Scholar
Gustavson, T. L., Chikkatur, A. P., Leanhardt, A. E., et al. 2001. Transport of Bose–Einstein condensates with optical tweezers. Phys. Rev. Lett., 88, 020401.CrossRefGoogle ScholarPubMed
Hänsch, T. W., and Schawlow, A. L. 1975. Cooling of gases by laser radiation. Opt. Commun., 13, 68–9.CrossRefGoogle Scholar
Hemmerich, A., Zimmermann, C., and Hänsch, T. W. 1993. Sub-kHz Rayleigh resonance in a cubic atomic crystal. Europhys. Lett., 22, 89–94.CrossRefGoogle Scholar
Hess, H. F. 1986. Evaporative cooling of magnetically trapped and compressed spinpolarized hydrogen. Phys. Rev. B, 34, 3476–9.CrossRefGoogle Scholar
Hill, S. B., and McClelland, J. J. 2003. Atoms on demand: Fast, deterministic production of single Cr atoms. Appl. Phys. Lett., 82, 3128–30.CrossRefGoogle Scholar
Hodby, E., Hechenblaikner, G., Hopkins, S. A., Maragò, O. M., and Foot, C. J. 2001. Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett., 88, 010405.CrossRefGoogle Scholar
Hopkins, S. A., and Durrant, A. V. 1997. Parameters for polarization gradients in threedimensional electromagnetic standing waves. Phys. Rev. A, 56, 4012–22.CrossRefGoogle Scholar
Jaksch, D., Bruder, C., Cirac, J. I., Gardiner, C.W., and Zoller, P. 1998. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81, 3108–11.CrossRefGoogle Scholar
Jessen, P. S., Gerz, C., Lett, P. D., et al. 1992. Observation of quantized motion of Rb atoms in an optical field. Phys. Rev. Lett., 69, 49–52.CrossRefGoogle Scholar
Jona-Lasinio, M., Morsch, O., Cristiani, M., et al. 2003. Asymmetric Landau–Zener tunneling in a periodic potential. Phys. Rev. Lett., 91, 230406.CrossRefGoogle Scholar
Jones, P. H., Stocklin, M. M., Hur, G., and Monteiro, T. S. 2004. Atoms in double-d- kicked periodic potentials: Chaos with long-range correlations. Phys. Rev. Lett., 93, 223002.CrossRefGoogle Scholar
Kasevich, M., and Chu, S. 1992. Laser cooling below a photon recoil with three-level atoms. Phys. Rev. Lett., 69, 1741–4.CrossRefGoogle Scholar
Ketterle, W., and Van Druten, N. J. 1996. Evaporative cooling of trapped atoms. Adv. Atom. Mol. Opt. Phys., 37, 181–236.Google Scholar
Konishi, K., and Paffuti, G. 2009. Quantum mechanics: A new introduction. Oxford, UK: Oxford University Press.Google Scholar
Kuga, T., Torii, Y., Shiokawa, N., et al. 1997. Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett., 78, 4713–6.CrossRefGoogle Scholar
Kuhr, S., Alt, W., Schrader, D., et al. 2001. Deterministic delivery of a single atom. Science, 293, 278–80.CrossRefGoogle ScholarPubMed
Leanhardt, A. E., Pasquini, T. A., Saba, M., et al. 2003. Cooling Bose–Einstein condensates below 500 picokelvin. Science, 301, 1513–15.CrossRefGoogle ScholarPubMed
Leggett, A. J. 2001. Superfluidity. Rev. Mod. Phys., 71, S318–S323.Google Scholar
Letokhov, V. S., Minogin, V. G., and Pavlik, B. D. 1976. Cooling and trapping of atoms and molecules by a resonant laser field. Opt. Commun., 19, 72–5.CrossRefGoogle Scholar
Lett, P. D., Watts, R. N., Westbrook, C. I., et al. 1988. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett., 61, 169–72.CrossRefGoogle ScholarPubMed
Lett, P. D., Phillips, W. D., Rolston, S. L., et al. 1989. Optical molasses. J. Opt. Soc. Am. B, 6, 2084–2107.CrossRefGoogle Scholar
London, F. 1938. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature, 141, 643–4.CrossRefGoogle Scholar
Madison, K. W., Chevy, F., Wohlleben, W., and Dalibard, J. 2000. Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 84, 806–9.CrossRefGoogle Scholar
Maragò, O. 2001 (Trinity Term). The scissors mode and superfluidity of a Bose–Einstein condensed gas. Ph.D. thesis, University of Oxford, Oxford, UK.Google Scholar
Maragò, O. M., Hopkins, S. A., Arlt, J., et al. 2000. Observation of the scissors mode and evidence for superfluidity of a trapped Bose–Einstein condensed gas. Phys. Rev. Lett., 84, 2056–9.CrossRefGoogle ScholarPubMed
Masuhara, N., Doyle, J. M., Sandberg, J. C., et al. 1988. Evaporative cooling of spinpolarized atomic hydrogen. Phys. Rev. Lett., 61, 935–88.CrossRefGoogle Scholar
Matthews, M. R., Anderson, B. P., Haljan, P. C., et al. 1999. Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 83, 2498–501.CrossRefGoogle Scholar
Meschede, D., and Rauschenbeutel, A. 2006. Manipulating single atoms. Adv. Atom. Mol. Opt. Phys., 53, 75–104.Google Scholar
Meystre, P. 2001. Atom optics. Heidelberg, Germany: Springer-Verlag.CrossRefGoogle Scholar
Migdall, A. L., Prodan, J. V., Phillips, W. D., Bergeman, T. H., and Metcalf, H. J. 1985. First observation of magnetically trapped neutral atoms. Phys. Rev. Lett., 54, 2596–9.CrossRefGoogle ScholarPubMed
Morsch, O., and Oberthaler, M. 2006. Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys., 78, 179–215.CrossRefGoogle Scholar
Morsch, O., Müller, J. H., Cristiani, M., Ciampini, D., and Arimondo, E. 2001. Bloch oscillations and mean-field effects of Bose–Einstein condensates in 1D optical lattices. Phys. Rev. Lett., 87, 140402.CrossRefGoogle ScholarPubMed
Nogrette, F., Labuhn, H., Ravets, S., et al. 2014. Single-atom trapping in holographic 2D arrays of microtraps with arbitrary geometries. Phys. Rev. X, 4, 021034.Google Scholar
Onofrio, R., Raman, C., Vogels, J. M., et al. 2000. Observation of superfluid flow in a Bose–Einstein condensed gas. Phys. Rev. Lett., 85, 2228–31.CrossRefGoogle Scholar
Ovchinnikov, Yu. B., Manek, I., and Grimm, R. 1997. Surface trap for Cs atoms based on evanescent-wave cooling. Phys. Rev. Lett., 79, 2225–8.CrossRefGoogle Scholar
Petrich, W., Anderson, M. H., Ensher, J. R., and Cornell, E. A. 1995. Stable, tightly confining magnetic trap for evaporative cooling of neutral atoms. Phys. Rev. Lett., 74, 3352–5.CrossRefGoogle ScholarPubMed
Petsas, K. I., Coates, A. B., and Grynberg, G. 1994. Crystallography of optical lattices. Phys. Rev. A, 50, 5173–89.CrossRefGoogle ScholarPubMed
Pitaevskii, L., and Stringari, S. 2003. Bose–Einstein condensation. Oxford, UK: Oxford University Press.Google Scholar
Pitaevskii, L. P. 1961. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP, 13, 451–4.Google Scholar
Pritchard, D. E. 1983. Cooling neutral atoms in a magnetic trap for precision spectroscopy. Phys. Rev. Lett., 51, 1336–9.CrossRefGoogle Scholar
Prodan, J. V., Phillips, W. D., and Metcalf, H. 1982. Laser production of a very slow monoenergetic atomic beam. Phy. Rev. Lett., 49, 1149–53.CrossRefGoogle Scholar
Raab, E. L., Prentiss, M., Cable, A., Chu, S., and Pritchard, D. E. 1987. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59, 2631–4.CrossRefGoogle ScholarPubMed
Raman, C., Köhl, M., Onofrio, R., et al. 1999. Evidence for a critical velocity in a Bose– Einstein condensed gas. Phys. Rev. Lett., 83, 2502–5.CrossRefGoogle Scholar
Rychtarik, D., Engeser, B., Nägerl, H.-C., and Grimm, R. 2004. Two-dimensional Bose– Einstein condensate in an optical surface trap. Phys. Rev. Lett., 92, 173003.CrossRefGoogle Scholar
Ryu, C., Andersen, M. F., Cladé, P., et al. 2007. Observation of persistent flow of a Bose– Einstein condensate in a toroidal trap. Phys. Rev. Lett., 99, 260401.CrossRefGoogle Scholar
Schlosser, N., Reymond, G., Protsenko, I., and Grangier, P. 2001. Sub-Poissonian loading of single atoms in a microscopic dipole trap. Nature, 411, 1024–7.CrossRefGoogle Scholar
Stamper-Kurn, D. M., and Ueda, M. 2013. Spinor Bose gases: Symmetries, magnetism, and quantum dynamics. Rev. Mod. Phys., 85, 1191–244.CrossRefGoogle Scholar
Stellmer, S., Pasquiou, B., Grimm, R., and Schreck, F. 2013. Laser cooling to quantum degeneracy. Phys. Rev. Lett., 110, 263003.CrossRefGoogle ScholarPubMed
Tilley, D. R., and Tilley, J. 1990. Superfluidity and superconductivity. 2nd ed. Boca, Raton, FL: CRC Press.Google Scholar
Verkerk, P., Lounis, B., Salomon, C., et al. 1992. Dynamics and spatial order of cold cesium atoms in a periodic optical potential. Phys. Rev. Lett., 68, 3861–84.CrossRefGoogle Scholar
Verkerk, P., Meacher, D. R., Coates, A. B., et al. 1994. Designing optical lattices: An investigation with cesium atoms. Europhys. Lett., 26, 171–6.CrossRefGoogle Scholar
Weber, T., Herbig, J., Mark, M., Nägerl, H.-C., and Grimm, R. 2003. Bose–Einstein condensation of cesium. Science, 299, 232–5.CrossRefGoogle ScholarPubMed
Westbrook, C. I., Watts, R. N., Tanner, C. E., et al. 1990. Localization of atoms in a three-dimensional standing wave. Phys. Rev. Lett., 65, 33–6.CrossRefGoogle Scholar
Wineland, D., and Dehmelt, H. 1975. Proposed 1014Δν < ν laser fluorescence spectroscopy on Tl+ mono-ion oscillator III. Bull. Am. Phys. Soc., 20, 637.Google Scholar
Wing, W. H. 1984. On neutral particle trapping in quasistatic electromagnetic fields. Prog. Quant. Electron, 8, 181–99.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×