Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T02:13:52.898Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2014

Ashley Gerard Davies
Affiliation:
Jet Propulsion Laboratory - California Institute of Technology
Get access
Type
Chapter
Information
Volcanism on Io
A Comparison with Earth
, pp. 317 - 340
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M. (2000). The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER): data products for the high-spatial resolution imager on NASA's Terra platform. International Journal of Remote Sensing, 21, no. 5, 847–59.CrossRefGoogle Scholar
Abtahi, A. A, A. B., Kahle, E. A., Abbott, et al. (2002). Emissivity changes in basalt cooling after eruption from Pu'u ‘O'o, Kilauea, Hawai'i, Eos Transactions, AGU, 83(47), Fall Meeting. Supplement, Abstract V71A-1263.Google Scholar
Aksnes, K., and F. A., Franklin. (2001). Secular acceleration of Io derived from mutual satellite events. Astronomical Journal, 122, 2734–9.CrossRefGoogle Scholar
Amelin, Y., A. N., Krot, I. D., Hutcheon, et al. (2002). Lead isotope ages of chondrules and calcium-aluminum-rich inclusions. Science, 297, 1678–83.CrossRefGoogle Scholar
Anderson, D. L. (1999). Planet Earth. In The New Solar System, 4th edn., ed. J. K., Beatty et al. Cambridge, UK: Cambridge University Press, pp. 111–24.Google Scholar
Anderson, G., J., Chetwynd, and J., Theriault. (1993). MODTRAN2: suitability for remote sensing. Proceedings of the SPIE, 1968, 514–25.Google Scholar
Anderson, J. D., G. W., Null, and S. K., Wong. (1974). Gravity results from Pioneer 10 Doppler data. Journal of Geophysical Research, 79, 3661–4.CrossRefGoogle Scholar
Anderson, J. D., W. L., Sjogren, and G., Schubert. (1996). Galileo gravity results and the internal structure of Io. Science, 272, 709–12.CrossRefGoogle ScholarPubMed
Anderson, J. D., R. A., Jacobson, E. L., Lau, et al. (2001). Io's gravity field and interior structure. Journal of Geophysical Research, 106, 32963–70.CrossRefGoogle Scholar
Anderson, J. D., G., Schubert, A., Anabtawi, et al. (2002). Recent results on Io's gravity field and interior structure. AGU Spring Meeting Abstracts, P21B-01.
Arndt, N. T., and E. G., Nisbet. (1982). Komatiites. London: George Allen and Unwin.Google Scholar
Arndt, N. T., D. M., Francis, and A. J., Hynes. (1979). The field characteristics and petrology of Archean and Proterozoic komatiites. The Canadian Mineralogist, 17, 147–63.Google Scholar
Arthur, D. W. (1981). Vertical dimensions of the Galilean satellites. NASA TM-81776. Washington, DC: NASA.
Baloga, S., and D., Pieri. (1986). Time-dependent profiles of lava flows. Journal of Geophysical Research, 91, 9543–52.CrossRefGoogle Scholar
Barberi, F., and J., Varet. (1970). The Erta ′Ale volcanic range. Bulletin Volcanologique, 34, 848–917.Google Scholar
Bartha, G. (1981). Earth tides in geodynamics. Acta Geology Geophysics et Montanist, 16, 265–8.Google Scholar
Becker, T., and P. E., Geissler. (2005). Galileo global color mosaics of Io. Lunar and Planetary Science Conference, XXXVI, Abstract 1862.
Belton, M. J. S., R. A., West, and J., Rahe (Eds.). (1989). Time-variable phenomena in the jovian system. NASA-SP-494. Washington, DC: NASA.
Belton, M. J. S., K. P., Klaasen, M. C., Clary, et al. (1992). The Galileo Solid-State Imaging experiment. Space Science Reviews, 60, 413–55.CrossRefGoogle Scholar
Binder, A. B., and D. P., Cruikshank. (1964). Evidence for an atmosphere on Io. Icarus, 3, 299.CrossRefGoogle Scholar
Blake, S. (1981). Volcanism and the dynamics of open magma chambers. Nature, 289, 783–5.CrossRefGoogle Scholar
Blaney, D. L., T. V., Johnson, D. L., Matson, et al. (1995). Volcanic eruptions on Io: heat flow, resurfacing, and lava composition. Icarus, 113, 220–5.CrossRefGoogle Scholar
Blaney, D. L., D. L., Matson, T. V., Johnson, et al. (1998). The role of thermal emission in determining SO2 frost band depths in the Galileo NIMS G2 data. Bulletin of the American Astronomical Society, 30, 1121.Google Scholar
Blaney, D. L., D. L., Matson, T. V., Johnson, et al. (2000). Myriads of small, hot eruptions on Io. Lunar and Planetary Science Conference XXXI, Abstract 1617.
Boehler, R. (1986). The phase diagram of iron to 430 kbar. Geophysical Research Letters, 13, 1153–6.CrossRefGoogle Scholar
Boehler, R. (1992). Melting of the Fe-FeO and Fe-FeS systems at high pressure: constraints on core temperatures. Earth and Planetary Science Letters, 111, 217–27.CrossRefGoogle Scholar
Brett, R. (1973). Lunar core of Fe-Ni-S. Geochimica et Cosmochimica Acta, 37, 165–70.CrossRefGoogle Scholar
Brown, R. A. (1974). Optical line emission from Io. IAU Symposium 65: Exploration of the Planetary System, 65, 527–31.Google Scholar
Burns, J., and M. S., Matthews (Eds.). (1986). Satellites. Tucson: University of Arizona Press.
BVSP. (1981). Basaltic Volcanism on the Terrestrial Planets – Basaltic Volcanism Study Project. New York: Pergamon Press.
Calvari, S., M., Cotelli, M., Neri, et al. (1994). The 1991–1993 Etna eruption: chronology and lava flow-field evolution. Acta Volcanology, 4, 1–14.Google Scholar
Carlson, R. W., P. R., Weissman, W. D., Smythe, et al. (1992). Near-Infrared Mapping Spectrometer experiment on Galileo. Space Science Reviews, 60, 457–502.CrossRefGoogle Scholar
Carlson, R. W., W. D., Smythe, R. M. C., Lopes-Gautier, et al. (1997). Distribution of sulfur dioxide and other infrared absorbers on the surface of Io. Geophysical Research Letters, 24, 2479.CrossRefGoogle Scholar
Carr, M. H. (1985). Volcanic sulphur flows on Io. Nature, 313, 735–6.CrossRefGoogle Scholar
Carr, M. H. (1986). Silicate volcanism on Io. Journal of Geophysical Research, 91, 3521–32.CrossRefGoogle Scholar
Carr, M. H., H., Masursky, R. G., Strom, et al. (1979). Volcanic features of Io. Nature, 280, 729–33.CrossRefGoogle Scholar
Carr, M. H., A. S., McEwen, K. A., Howard, et al. (1998). Mountains and calderas on Io: possible implications for lithosphere structure and magma generation. Icarus, 135, 146–65.CrossRefGoogle Scholar
Casadevall, T. J., J. B., Stokes, L. P., Greenland. et al. (1987). SO2 and CO2 emission rates at Kilauea volcano, 1979–1984. In Volcanism in Hawaii, ed. R. W., Decker et al. U.S. Geological Survey Professional Paper 1350, pp. 771–80.Google Scholar
Cassen, P., and R. T., Reynolds. (1974). Convection in the Moon: effect of variable viscosity. Journal of Geophysical Research, 79, 2937–44.CrossRefGoogle Scholar
Cassen, P., S. J., Peale, and R., Reynolds. (1982). Structure and thermal evolution of the Galilean satellites. In Satellites of Jupiter, ed. D., Morrison. Tucson: University of Arizona Press, pp. 93–128.Google Scholar
Castillo, J. C., D. L., Matson, T. V., Johnson, et al. (2005). 26Al in the saturnian system – new interior models for the saturnian satellites. AGU Fall Meeting Abstracts. P32A-05.
Cattermole, P. J. (1996). Planetary Volcanism – A Study of Volcanic Activity in the Solar System, 2nd edn. New York: Wiley.Google Scholar
Cervelli, P. F., and A., Miklius. (2003). The shallow magmatic system of Kilauea volcano. In The Pu'u ‘O'o-Kupaianaha Eruption of Kilauea Volcano, Hawai'i: The First 20 Years, ed. C., Heliker et al. U.S. Geological Survey Professional Paper 1676, pp. 149–64.Google Scholar
Chien, S., R., Sherwood, D., Tran, et al. (2005). Using autonomy flight software to improve science return on Earth Observing One. Journal of Aerospace Computing, Information, & Communication, 2, 196–216.CrossRefGoogle Scholar
Clark, R. N., and T. B., McCord. (1980). The Galilean satellites – new near-infrared spectral reflectance measurements (0.65–2.5 microns) and a 0.325–5 micron summary. Icarus, 41, 323–39.CrossRefGoogle Scholar
Clark, S. P. (1966). Viscosity. In Handbook of Physical Constants, ed. S. P., Clark. U.S. Geological Survey Memoir 97, pp. 291–300.Google Scholar
Clow, G. D., and M. H., Carr. (1980). Stability of sulfur slopes on Io. Icarus, 44, 268–79.CrossRefGoogle Scholar
Cohen, B. A., and R. F., Coker. (2000). Modelling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus, 145, 369–81.CrossRefGoogle Scholar
Collins, S. A. (1981). Spatial color variations in the volcanic plume at Loki, on Io. Journal of Geophysical Research, 86, 8621–6.CrossRefGoogle Scholar
Consolmagno, G. J. (1981). Io – thermal models and chemical evolution. Icarus, 47, 36–45.CrossRefGoogle Scholar
Crisp, J., and S., Baloga. (1990a). A model for lava flows with two thermal components. Journal of Geophysical Research, 95, 1255–70.CrossRefGoogle Scholar
Crisp, J., and S., Baloga. (1990b). A method for estimating eruption rates of planetary lava flows. Icarus, 85, 512–15.CrossRefGoogle Scholar
Crisp, J. A. (1984). Rates of magma emplacement and volcanic output. Journal of Volcanology and Geothermal Research, 20, 177–211.CrossRefGoogle Scholar
Cruikshank, D. P., T. J., Jones, and C. B., Pilcher. (1977). Absorptions in the spectrum of Io, 3.0–4.2 microns. Bulletin of the American Astronomical Society, 9, 465.Google Scholar
Cruikshank, D. P., T. J., Jones, and C. B., Pilcher. (1978). Absorption bands in the spectrum of Io. Astrophysical Journal, 225, L89–L92.CrossRefGoogle Scholar
Darwin, G. H. (1880). On the secular change of the orbit of a satellite revolving about a tidally-distorted planet. Philosophical Transactions of the Royal Society of London, 171, 713–891.CrossRefGoogle Scholar
Davies, A. G. (1988). Sulphur-silicate interactions on the jovian satellite Io. Unpublished Ph.D. thesis, Lancaster University, Lancaster, UK.
Davies, A. G. (1996). Io's volcanism: thermo-physical models of silicate lava compared with observations of thermal emission. Icarus, 124, 45–61.CrossRefGoogle Scholar
Davies, A. G. (2001). Volcanism on Io: the view from Galileo. Astronomyand Geophysics, 42, 10–12.Google Scholar
Davies, A. G. (2002). A tale of two hot spots: charting thermal output variations at Prometheus and Amirani from Galileo NIMS data. AGU Fall Meeting Abstract P71B–0461.
Davies, A. G. (2003a). Temperature, age and crust thickness distributions of Loki Patera on Io from Galileo NIMS data: implications for resurfacing mechanism. Geophysical Research Letters, 30, 2133–6.CrossRefGoogle Scholar
Davies, A. G. (2003b). Volcanism on Io: estimation of eruption parameters from Galileo NIMS data. Journal of Geophysical Research (Planets), 108, 5106–20.Google Scholar
Davies, A. G., and L. P., Keszthelyi. (2005). Classification of volcanic eruptions on Io and Earth using low-resolution remote sensing data. Lunar and Planetary Science Conference XXXVI, Abstract 1963.
Davies, A. G., and L. P., Keszthelyi. (2007). The thermal signature of volcanic eruptions on Io and Earth, manuscript in prep.
Davies, A. G., and P., Kyle. (2006). Spacecraft and in-situ observations of the Mt. Erebus, Antarctica, lava lake: a terrestrial analogue for Pele on Io. Lunar and Planetary Science Conference XXXVII, Abstract 2284.
Davies, A. G., and L., Wilson. (1987). Photoclinometric determination of surface topography and albedo variations on Io. Lunar and Planetary Science Conference XVIII, Abstract, 18, 221–2.Google Scholar
Davies, A. G., and L., Wilson. (1988). Silicate-sulphur interactions on Io – implications for Pele type plumes. Lunar and Planetary Science Conference XIX, Abstract, 19, 247–8.Google Scholar
Davies, A. G., A. S., McEwen, R. M. C., Lopes-Gautier, et al. (1997). Temperature and area constraints of the South Volund volcano on Io from the NIMS and SSI instruments during the Galileo G1 orbit. Geophysical Research Letters, 24, 2447.CrossRefGoogle Scholar
Davies, A. G., R., Lopes-Gautier, W. D., Smythe, et al. (2000a). Silicate cooling model fits to Galileo NIMS data of volcanism on Io. Icarus, 148, 211–25.CrossRefGoogle Scholar
Davies, A. G., L. P., Keszthelyi, R. M. C., Lopes-Gautier, et al. (2000b). Eruption evolution of major volcanoes on Io: Galileo takes a close look. Lunar and Planetary Science Conference XXXI, Abstract 1754.
Davies, A. G., L. P., Keszthelyi, D. A., Williams, et al. (2001). Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. Journal of Geophysical Research, 106, 33079–104.CrossRefGoogle Scholar
Davies, A. G., J., Radebaugh, L. W., Kamp, et al. (2002). The lava lake at Pele: an analysis of high-resolution, multi-wavelength Galileo data. Lunar and Planetary Science Conference XXXIII, Abstract 1162.
Davies, A. G., D. L., Matson, G. J., Veeder, et al. (2005). Post-solidification cooling and the age of Io's lava flows. Icarus, 176, 123–37.CrossRefGoogle Scholar
Davies, A. G., S., Chien, V., Baker, et al. (2006a). Monitoring active volcanism with the Autonomous Sciencecraft Experiment on EO-1. Remote Sensing of Environment, 101, 427–46.CrossRefGoogle Scholar
Davies, A. G., S., Chien, R., Wright, et al. (2006b). Sensor web enables rapid response to volcanic activity. Eos, 87, 1, 5.CrossRefGoogle Scholar
Davies, A. G., L., Wilson, D. L., Matson, et al. (2006c). The heartbeat of the volcano: the discovery of episodic activity at Prometheus on Io. Icarus, 184, 460–77.CrossRefGoogle Scholar
Davies, A. G., L. P., Keszthelyi, and L., Wilson. (2006d). Estimation of maximum effusion rate for the Pillan 1997 eruption on Io: implications for massive basaltic flow emplacement on Earth and Mars. Lunar and Planetary Science Conference XXXVII, Abstract 1155.
Davies, A. G., S., Chien, T., Doggett, et al. (2006e). Improving mission survivability and science return with onboard autonomy. Paper presented at the International Planetary Probes Workshop 4, June 27–30, 2006, Pasadena, CA.
Davies, M. E. (1982). Cartography and nomenclature for the Galilean satellites. Proceedings of the Satellites of Jupiter Conference, January, 1982, pp. 911–33.Google Scholar
Davies, M. E., T. R., Colvin, J., Oberst, et al. (1998). The control networks of the Galilean satellites and implications for global shape. Icarus, 135, 372–6.CrossRefGoogle Scholar
de Pater, I., F., Marchis, B. A., Macintosh, et al. (2004). Keck AO observations of Io in and out of eclipse. Icarus, 169, 250–63.CrossRefGoogle Scholar
de Sitter, W. (1931). Jupiter's Galilean satellites (George Darwin Lecture). Monthly Notices of the Royal Astronomical Society, 91, 706–38.Google Scholar
Desch, M. D. (1980). Io control of Jovian radio emission. Nature, 287, 815–17.CrossRefGoogle Scholar
Deschamps, P., J. E., Arlot, W., Thuillot, et al. (1992). Observations of the volcanoes of Io, Loki and Pele, made in 1991 at the ESO during an occultation by Europa. Icarus, 100, 235–44.Google Scholar
Dessler, A. J., and T. W., Hill. (1979). Jovian longitudinal control of Io-related radio emissions. Astrophysical Journal, 227, 664–75.CrossRefGoogle Scholar
Dollfus, A. (1975). Optical polarimetry of the Galilean satellites of Jupiter. Icarus, 25, 416–31.CrossRefGoogle Scholar
Douté, S., B., Schmitt, R., Lopes-Gautier, et al. (2001). Mapping SO2 frost on Io by the modeling of NIMS hyperspectral images. Icarus, 149, 107–32.CrossRefGoogle Scholar
Douté, S., R., Lopes, L. W., Kamp, et al. (2002). Dynamics and evolution of SO2 gas condensation around Prometheus-like volcanic plumes on Io as seen by the Near Infrared Mapping Spectrometer. Icarus, 158, 460–82.CrossRefGoogle Scholar
Douté, S., R., Lopes, L. W., Kamp, et al. (2004). Geology and activity around volcanoes on Io from the analysis of NIMS spectral images. Icarus, 169, 175–96.CrossRefGoogle Scholar
Dragoni, M. (1989). A dynamical model of lava flows cooling by radiation. Bulletin of Volcanology, 51, 88–95.CrossRefGoogle Scholar
Dunbar, N. W., K. V., Cashman, and R., Dupré. (1994). Crystallization processes of anorthoclase phenocrysts in the Mount Erebus magmatic system: evidence from crystal composition, crystal size distributions, and volatile contents of melt inclusions. In Volcanological and Environmental Studies of Mount Erebus, Antarctica, Antarctic Research Series, vol. 66, ed. P., Kyle. Washington, DC: AGU, pp. 129–46.Google Scholar
Dzurisin, D., L. A., Anderson, G. P., Eaton, et al. (1980). Geophysical observations of Kilauea volcano, Hawaii, 2: constraints on the magma supply during November 1975–September 1977. Journal of Volcanology and Geothermal Research, 7, 241–69.CrossRefGoogle Scholar
Eliason, E. M., C. J., Hansen, A. S., McEwen, et al. (2003). Operation of MRO's High Resolution Imaging Science Experiment (HiRise): maximizing science participation. Sixth International Conference on Mars, July 20–25, 2003, Pasadena, CA, Abstract 3122.
Ennis, M. E., and A. G., Davies. (2005). Thermal emission variability of Zamama, Culann and Tupan on Io using Galileo Near-Infrared Mapping Spectrometer (NIMS) data. Lunar and Planetary Science Conference XXXVI, Abstract 1474.
Fanale, F. P., R. H., Brown, D. P., Cruikshank, et al. (1979). Significance of absorption features in Io's IR reflectance spectrum. Nature, 280, 761–3.CrossRefGoogle Scholar
Fink, J. H., S. O., Park, and R., Greeley. (1983). Cooling and deformation of sulfur flows, Icarus, 56, 38–50.CrossRefGoogle Scholar
Fink, U., N. H., Dekkers, and H. P., Larson. (1973). Infrared spectra of the Galilean satellites of Jupiter. Astrophysical Journal, 179, L155.CrossRefGoogle Scholar
Fink, U., H. P., Larson, L. A., Lebofsky, et al. (1978). The 2–4 micron spectrum of Io. Bulletin ofthe American Astronomical Society, 10, 580.Google Scholar
Fischer, D. (2001). Mission Jupiter: The Spectacular Journey of the Galileo spacecraft. New York: Springer-Verlag.CrossRefGoogle Scholar
Fischer, H. J., and T., Spohn. (1990). Thermal-orbital histories of viscoelastic models of Io (J1). Icarus, 83, 39–65.CrossRefGoogle Scholar
Flynn, L. P., and P. J., Mouginis-Mark. (1992). Cooling rate of an active Hawaiian lava flow from nighttime spectroradiometer measurements. Geophysical Research Letters, 19, 1783–6.CrossRefGoogle Scholar
Flynn, L. P., P. J., Mouginis-Mark, J. C., Gradie, et al. (1993). Radiative temperature measurements at Kupaianaha lava lake, Kilauea volcano, Hawai'i. Journal of Geophysical Research, 98, 6461–76.CrossRefGoogle Scholar
Flynn, L. P., P. P., Mouginis-Mark, and K. A., Horton. (1994). Distribution of thermal areas on an active lava flow field. Bulletin of Volcanology, 56, 284–96.CrossRefGoogle Scholar
Flynn, L. P., A. J. L., Harris, D. A., Rothery, et al. (2000). High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data. In Remote Sensing of Active Volcanism, Geophysical Monograph 116, ed. P., Mouginis-Mark et al. Washington, DC: American Geophysical Union, pp. 161–77.Google Scholar
Francis, P., and C., Oppenheimer. (2004). Volcanoes – A Planetary Perspective, 2nd edn. Oxford, UK: Oxford University Press.Google Scholar
Francis, P. W. (1993). Volcanoes – A Planetary Perspective. Oxford, UK: Oxford University Press.Google Scholar
Francis, P. W., and D. A., Rothery. (1987). Using Landsat Thematic Mapper to detect and monitor volcanic activity: an example from Lascar volcano, north Chile. Geology, 15, 614–17.2.0.CO;2>CrossRefGoogle Scholar
Frank, L. A., and W. R., Paterson. (2001). Passage through Io's ionospheric plasmas by the Galileo spacecraft. Journal of Geophysical Research, 106, 26209–24.Google Scholar
Fujii, N., and S., Uyeda. (1974). Thermal instabilities during flow of magma in volcanic conduits. Journal of Geophysical Research, 79, 3367–9.CrossRefGoogle Scholar
Gaskell, R. W., S. P., Synnott, A. S., McEwen, et al. (1988). Large-scale topography of Io – implications for internal structure and heat transfer. Geophysical Research Letters, 15, 581–4.CrossRefGoogle Scholar
Gawarecki, S. J., R. J. P., Lyon, and W., Nordberg. (1965). Infrared spectral returns and imagery of the Earth from space and their applications to geological problems. Science and Technology Series, vol. 4, American Astronautical Society, pp. 13–33.Google Scholar
Geissler, P. E. (2003). Volcanic activity on Io during the Galileo era. Annual Review of Earth and Planetary Sciences, 31, 175–211.CrossRefGoogle Scholar
Geissler, P. E., and M., McMillan. (2006). Galileo observations of volcanic plumes on Io. Lunar and Planetary Science Conference XXXVII, Abstract 1913.
Geissler, P. E., A. S., McEwen, L., Keszthelyi, et al. (1999). Global color variations on Io. Icarus, 140, 265–82.CrossRefGoogle Scholar
Geissler, P. E., A., McEwen, C., Phillips, et al. (2004a). Surface changes on Io during the Galileo mission. Icarus, 169, 29–64.
Geissler, P. E., A., McEwen, C., Porco, et al. (2004b). Cassini observations of Io's visible aurorae. Icarus, 172, 127–40.CrossRefGoogle Scholar
Giggenbach, W. F., P. R., Kyle, and G. L., Lyon. (1973). Present volcanic activity on Mount Erebus, Ross Island, Antarctica. Geology, 1, 135–6.2.0.CO;2>CrossRefGoogle Scholar
Glaze, L. S., P. W., Francis, and D. A., Rothery. (1989). Measuring thermal budgets of active volcanoes by satellite remote sensing. Nature, 338, 144–6.CrossRefGoogle Scholar
Goguen, J. D., and W. M., Sinton. (1985). Characterization of Io's volcanic activity by infrared polarimetry. Science, 230, 65–9.CrossRefGoogle ScholarPubMed
Goguen, J. D., D. L., Matson, W. M., Sinton, et al. (1988). Io hot spots – infrared photometry of satellite occultations. Icarus, 76, 465–84.CrossRefGoogle Scholar
Goguen, J. D., A., Lubenow, and A., Storrs. (1998). HST NICMOS images of Io in Jupiter's shadow. Bulletin of the American Astronomical Society, 30, 1120.Google Scholar
Goldreich, P., and S., Soter. (1966). Q in the Solar System. Icarus, 5, 375–89.CrossRefGoogle Scholar
Goldstein, S. J., Jr., and K. C., Jacobs. (1986). The contraction of Io's orbit. Astronomical Journal, 92, 199–202.CrossRefGoogle Scholar
Goldstein, S. J., Jr., and K. C., Jacobs. (1995). A recalculation of the secular acceleration of Io. Astronomical Journal, 110, 3054.CrossRefGoogle Scholar
Gounelle, M., and S. S., Russell. (2005). Spatial heterogeneity of short-lived isotopes in the solar accretion disk and early Solar System chronology. In ASP Conference Series, vol. 341, ed. A. N., Krot, et al., pp. 588–601.Google Scholar
Gounelle, M., F. H., Shu, H., Shang, et al. (2006). The irradiation of beryllium radioisotopes and other short-lived radionuclides. Astronomical Journal, 640, 1163–70.Google Scholar
Graham, F., and B., Hapke. (1986). Observational evidence for red polar caps on Io. NASA TM 88383: Reports of Planetary Geology and Geophysics Program 1985, p. 73.Google Scholar
Grattan, J. (2005). Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos, 79, 343–53.CrossRefGoogle Scholar
Greeley, R., and J., Iverson. (1987). Wind as a Geological Process on Earth, Mars, Venus and Titan, 2nd edn. Cambridge, UK: Cambridge University Press.Google Scholar
Greeley, R., E., Theilig, and P., Christensen. (1984). The Mauna Loa sulfur flow as an analog to secondary sulfur flows on Io. Icarus, 60, 189–99.CrossRefGoogle Scholar
Greeley, R., S. W., Lee, D. A., Crown, et al. (1990). Observations of industrial sulfur flows – implications for Io. Icarus, 84, 374–402.CrossRefGoogle Scholar
Greenberg, R. (1987). Galilean satellites – evolutionary paths in deep resonance. Icarus, 70, 334–47.CrossRefGoogle Scholar
Greenberg, R. (1989). Time-varying orbits and tidal heating of the Galilean satellites. In NASA Special Publication Series, NASA-SP-494, ed. J. S. M., Belton et al. Washington, DC: NASA, pp. 100–15.Google Scholar
Gregg, T. K. P., and R. M., Lopes. (2004). Lava lakes on Io: new perspectives from modeling. Lunar and Planetary Science Conference XXXV, Abstract 1558.
Hamilton, W. B. (2003). An alternative Earth. GSA Today, 13, 4–12.2.0.CO;2>CrossRefGoogle Scholar
Hanel, R., B., Conrath, M., Flasar, et al. (1979). Infrared observations of the jovian system from Voyager 1. Science, 204, 972–6.CrossRefGoogle ScholarPubMed
Hansen, O. L. (1973). Ten-micron eclipse observations of Io, Europa, and Ganymede. Icarus, 18, 237.CrossRefGoogle Scholar
Hardee, H. C., and D. W., Larson. (1977). Viscous dissipation effects in magma conduits, Journal of Volcanology and Geothermal Research, 2, 299–308.CrossRefGoogle Scholar
Harland, D. M. (2000). Jupiter Odyssey: The Story of NASA's Galileo Mission. Chichester, UK: Springer-Verlag UK.Google Scholar
Harris, A. J. L., and M., Neri. (2002). Volumetric observations during paroxysmal eruptions at Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? Journal of Volcanology and Geothermal Research, 116, 79–95.CrossRefGoogle Scholar
Harris, A. J. L., S., Blake, D. A., Rothery, et al. (1997a). A chronology of the 1991 to 1993 Etna eruption using AVHRR data: implications for real time thermal volcano monitoring. Journal of Geophysical Research, 102, 7985–8003.CrossRefGoogle Scholar
Harris, A. J. L., A. L., Butterworth, R. W., Carlton, et al. (1997b). Low cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bulletin of Volcanology, 59, 59–64.CrossRefGoogle Scholar
Harris, A. J. L., L. P., Flynn, L., Keszthelyi, et al. (1998). Calculation of lava effusion rates from Landsat TM data. Bulletin of Volcanology, 60, 52–71.CrossRefGoogle Scholar
Harris, A. J. L., L. P., Flynn, D. A., Rothery, et al. (1999a). Mass flux measurements at active lava lakes: implications for magma recycling. Journal of Geophysical Research (Solid Earth), 104, 7117–36.Google Scholar
Harris, A. J. L., R., Wright, and L. P., Flynn. (1999b). Remote sensing of Mount Erebus volcano, Antarctica, using polar orbiters: progress and prospects. International Journal of Remote Sensing, 20, 3051–71.CrossRefGoogle Scholar
Harris, A. J. L., L. P., Flynn, K., Dean, et al. (2000a). Real-time satellite monitoring of volcanic hot spots. In Remote Sensing of Active Volcanism, AGU Geophysical Monograph 116, ed. P., Mouginis-Mark, et al., pp. 139–60.Google Scholar
Harris, A. J. L., J. B., Murray, S. E., Aries, et al. (2000b). Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. Journal of Volcanology and Geothermal Research, 102, 237–70.CrossRefGoogle Scholar
Harris, D. L. (1961). Photometry and colorimetry of planets and satellites. In Planets and Satellites, ed. G. P., Kuiper and B. M., Middlehurst. Chicago: University of Chicago Press, p. 305.Google Scholar
Head, J. W. (1990). Surfaces of terrestrial planets. In The New Solar System, 3rd edn., ed. J. K., Beatty and A., Chaikin. Cambridge, UK: Cambridge University Press, pp. 77–90.Google Scholar
Head, J. W. (1999). Surfaces and interiors of the terrestrial planets. In The New Solar System, 4th edn., ed. J. K., Beatty et al. Cambridge, UK: Cambridge University Press, pp. 157–73.Google Scholar
Head, J. W., and L., Wilson. (1981). Lunar sinuous rille formation by thermal erosion: conditions, rates and durations. Lunar and Planetary Science Conference XII, Abstract, 12, 427–9.Google Scholar
Head, J. W., and L., Wilson. (1986). Volcanic processes and landforms on Venus – theory, predictions, and observations. Journal of Geophysical Research, 91, 9407–46.CrossRefGoogle Scholar
Heliker, C., and T. N., Mattox. (2003). The first two decades of the Pu'u ‘O'o-Kupaianaha eruption: chronology and selected bibliography. In The Pu'u ‘O'o-Kupaianaha Eruption of Kilauea Volcano, Hawai'i: The First 20 Years, ed. C., Heliker et al. U.S. Geological Survey Professional Paper 1676, pp. 1–28.Google Scholar
Heliker, C., M. T., Mangan, T. N., Mattox, et al. (1998). The character of long-term eruptions; inferences from episodes 50–53 of the Pu'u ‘O'o-Kupaianaha eruption of Kilauea volcano. Bulletin of Volcanology, 59, 381–93.CrossRefGoogle Scholar
Hevye, P. J., and I. S., Sanders. (2006). A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies. Meteoritics and Planetary Science, 41, 95–106.Google Scholar
Hildreth, W., and J., Fierstein. (2000). Katmai volcanic cluster and the great eruption of 1912. Geological Society of America Bulletin, 112, 1594–620.2.0.CO;2>CrossRefGoogle Scholar
Hill, R. E. T., S. J., Barnes, M. J., Gole, et al. (1995). The volcanology of komatiites as deduced from field relationships in the Norseman-Wiluna Greenstone-Belt, Western Australia. Lithos, 34, 159–88.CrossRefGoogle Scholar
Hill, R. E. T., S. J., Barnes, S. E., Dowling, et al. (2002). Emplacement of komatiite flow fields: an inflationary model based on field evidence and modern mafic analogues. Geochimica et Cosmochimica Acta, 66, A328.Google Scholar
Hom, E. F. Y., F., Marchis, T. K., Lee, et al. (2007). AIDA: an adaptive image deconvolution algorithm application to multi-frame and three-dimensional data. Journal of the Optical Society of America, in press.CrossRef
Hon, K., J., Kauahikaua, R., Denlinger, et al. (1994). Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea volcano, Hawai'i. Geological Society of America Bulletin, 106, 351–70.2.3.CO;2>CrossRefGoogle Scholar
Hon, K., C., Gansecki, and J., Kauahikaua. (2003). The transition from a'a to pahoehoe crust on flows emplaced during the Pu'u ‘O'o-Kupaianaha eruption. In The Pu'u ‘O' o-Kupaianaha Eruption of Kilauea Volcano, Hawai'i: The First 20 Years, ed. C., Heliker et al. U.S. Geological Survey Professional Paper 1676, pp. 89–104.Google Scholar
Hooper, P. R. (2000). Flood basalt provinces. In Encyclopedia of Volcanoes, ed. H., Sigurdsson. San Diego: Academic Press, pp. 345–59.Google Scholar
Hord, C. W., W. E., McClintock, A. I. F., Stewart, et al. (1992). Galileo Ultraviolet Spectrometer experiment. Space Science Reviews, 60, 503–30.CrossRefGoogle Scholar
Howell, R. R. (1997). Thermal emission from lava flows on Io. Icarus, 127, 394–407.CrossRefGoogle Scholar
Howell, R. R. (2006). Corrigendum to “Thermal emission from lava flows on Io, Icarus, 127, 394–407,”Icarus, 182, 299.CrossRefGoogle Scholar
Howell, R. R., and R. M. C., Lopes. (2007). The nature of volcanic activity at Loki: insights from Galileo NIMS and PPR data. Icarus, 86, 448–61.Google Scholar
Howell, R. R., and M. T., McGinn. (1985). Infrared speckle observations of Io – an eruption in the Loki region. Science, 230, 63–5.CrossRefGoogle ScholarPubMed
Howell, R. R., and W. M., Sinton. (1989). Io and Europa: the observational evidence for variability. In Time-Variable Phenomena in the Jovian System, NASA SP-494, ed. J. S. M., Belton, et al. Washington, DC: NASA, pp. 47–62.Google Scholar
Howell, R. R., J. R., Spencer, J. D., Goguen, et al. (2001). Ground-based observations of volcanism on Io in 1999 and early 2000. Journal ofGeophysical Research, 106, 33, 129–40.Google Scholar
Hulme, G. (1974). The interpretation of lava flow morphology. Geophysical Journal of the Royal Astronomical Society, 39, 361–83.Google Scholar
Huppert, H. E., and R. S. J., Sparks. (1985). Komatiites 1: eruption and flow. Journal of Petrology, 26, 694–725.CrossRefGoogle Scholar
Huppert, H. E., R. S. J., Sparks, J. S., Turner, et al. (1984). Emplacement and cooling of komatiite lavas. Nature, 309, 19–22.CrossRefGoogle Scholar
Hussmann, H., and T., Spohn. (2004). Thermal-orbital evolution of Io and Europa. Icarus, 171, 391–410.CrossRefGoogle Scholar
HVO. (2005). USGS – Hawaiian Volcano Observatory online eruption summary, available at http://hvo.wr.usgs.gov/Kilauea/summary/Current_table.html.
ICT. (1929). International Critical Tables of Numerical Data, Physics, Chemistry and Technology, vol. V. Published for the National Research Council by McGraw-Hill (1926–1933). New York.
Jacobsen, S. B. (2005). The Hf-W isotopic system and the origin of the Earth and Moon. Annual Review of Earth and Planetary Science, 33, 531–70.CrossRefGoogle Scholar
Jacobsen, S. B., and Q., Yin. (2003). Hf-W, accretion of the Earth, core formation and the origin of the Moon. Lunar and Planetary Science Conference XXXIV, Abstract 1913.
Jaeger, W. L., and A. G., Davies. (2006). Models for the crustal structure of Io: implications for magma dynamics. Lunar and Planetary Science Conference XXXVII, Abstract 2274.
Jaeger, W. L., E. P., Turtle, L. P., Keszthelyi, et al. (2003). Orogenic tectonism on Io. Journal of Geophysical Research (Planets), 108, 5093–109.Google Scholar
Jarvis, R. A. (1995). On the cross-sectional geometry of thermal erosion channels formed by turbulent lava flows. Journal of Geophysical Research (Solid Earth), 100, 10, 127–40.Google Scholar
Jessup, K. L., J., Spencer, G. E., Ballester, et al. (2002). Spatially resolved UV spectra of Io's Prometheus plume and anti-jovian hemisphere. Bulletin of the American Astronomical Society, 34, 913.Google Scholar
Jessup, K. L., J. R., Spencer, G. E., Ballester, et al. (2004). The atmospheric signature of Io's Prometheus plume and anti-jovian hemisphere: evidence for a sublimation atmosphere. Icarus, 169, 197–215.CrossRefGoogle Scholar
Johnson, T. V. and C. B., Pilcher. (1977). Review of satellite spectro-photometry and composition. In Planetary Satellites, ed. J., Burns. Tucson: University of Arizona Press, pp. 232–68.Google Scholar
Johnson, T. V. and L., Soderblom. (1982). Volcanic eruptions on Io: implications for surface evolution and mass loss. In Satellites of Jupiter, ed. D., Morrison. Tucson: University of Arizona Press, pp. 634–46.Google Scholar
Johnson, T. V.A. F., Cook, II, C., Sagan, et al. (1979). Volcanic resurfacing rates and implications for volatiles on Io. Nature, 280, 746–50.CrossRefGoogle Scholar
Johnson, T. V.D., Morrison, D. L., Matson, et al. (1984). Volcanic hotspots on Io – stability and longitudinal distribution. Science, 226, 134–7.CrossRefGoogle ScholarPubMed
Johnson, T. V.G. J., Veeder, D. L., Matson, et al. (1988). Io – evidence for silicate volcanism in 1986. Science, 242, 1280–3.CrossRefGoogle ScholarPubMed
Johnson, T. V.D. L., Matson, D. L., Blaney, et al. (1995). Stealth plumes on Io. Geophysical Research Letters, 22, 3293–6.CrossRefGoogle Scholar
Johnson, T. V., K. B., Clark, R., Greeley, et al. (2006). Europa exploration: challenges and solutions. Lunar and Planetary Science Conference XXXVII, Abstract 1549.
Judge, D. L., and R. W., Carlson. (1974). Pioneer 10 observations of the ultraviolet glow in the vicinity of Jupiter. Science, 183, 317–18.CrossRefGoogle ScholarPubMed
Kargel, J. S., P., Delmelle, and D. B., Nash. (1999). Volcanogenic sulfur on Earth and Io: composition and spectroscopy. Icarus, 142, 249–80.CrossRefGoogle Scholar
Kargel, J., R., Carlson, A., Davies, et al. (2003a). Extreme volcanism on Io: latest insights at the end of the Galileo era. Eos, 84, 313–18.CrossRefGoogle Scholar
Kargel, J. S., B., Fegley, Jr., and L., Schaefer. (2003b). Ceramic volcanism on refractory worlds: the cases of Io and chondrite CAIs. Lunar and Planetary Science Conference XXXIV, Abstract 1964.
Kauahikaua, J. P., K. V., Cashman, T. N., Mattox, et al. (1998). Observations of basaltic lava streams in tubes from Kilauea volcano, island of Hawai'i. Journal of Geophysical Research, 103, 27303–23.CrossRefGoogle Scholar
Keszthelyi, L. (1995). A preliminary thermal budget for lava tubes on the Earth and planets. Journal of Geophysical Research, 100, 20411–20.CrossRefGoogle Scholar
Keszthelyi, L., and R., Denlinger. (1996). The initial cooling of pahoehoe flow lobes. Bulletin of Volcanology, 58, 5–18.CrossRefGoogle Scholar
Keszthelyi, L., and A., McEwen. (1997a). Magmatic differentiation of Io. Icarus, 130, 437–48.CrossRefGoogle Scholar
Keszthelyi, L., and A., McEwen. (1997b). Thermal models for basaltic volcanism on Io. Geophysical Research Letters, 24, 2463.CrossRefGoogle Scholar
Keszthelyi, L., A. S., McEwen, and G. J., Taylor. (1999). Note: revisiting the hypothesis of a global magma ocean in Io. Icarus, 141, 415–19.CrossRefGoogle Scholar
Keszthelyi, L., A. S., McEwen, and T., Thordarson. (2000). Terrestrial analogs and thermal models for martian flood lavas. Journal of Geophysical Research, 105, 15027–49.CrossRefGoogle Scholar
Keszthelyi, L., A. S., McEwen, C. B., Phillips, et al. (2001a). Imaging of volcanic activity on Jupiter's moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. Journal of Geophysical Research, 106, 33025–52.CrossRefGoogle Scholar
Keszthelyi, L., A. J. L., Harris, L., Flynn, et al. (2001b). Interpreting low spatial resolution thermal data from active volcanoes on Io and the Earth. Lunar and Planetary Science Conference XXXII, Abstract 1523.
Keszthelyi, L., W. L., Jaeger, E. P., Turtle, et al. (2004a). A post-Galileo view of Io's interior. Icarus, 169, 271–86.CrossRefGoogle Scholar
Keszthelyi, L., M., Milazzo, A. G., Davies, et al. (2006a). A simple thermal model for lava fountains: application to Io. Lunar and Planetary Science Conference XXXVII, Abstract 2216.
Keszthelyi, L., S., Self, and T., Thordarson. (2006b). Flood lavas on Earth, Io and Mars. Journal of the Geological Society of London, 163, 253–64.CrossRefGoogle Scholar
Keszthelyi, L. P., and S., Self. (1998). Some physical requirements for the emplacement of long basaltic lava flows. Journal of Geophysical Research, 103, 27447–64.CrossRefGoogle Scholar
Keszthelyi, L. P., T., Thordarson, A. S., McEwen, et al. (2004b). Icelandic analogs to martian flood lavas. Geochemistry Geophysics Geosystems, 5.CrossRefGoogle Scholar
Keszthelyi, L. P., M. P., Milazzo, W. L., Jaeger, et al. (2005a). Reconciling lava temperatures and interior models for Io. Lunar and Planetary Science Conference XXXVI, Abstract 1902.
Keszthelyi, L. P., W., Jaeger, M., Milazzo, et al. (2005b). Improved estimates for Io eruption temperatures: implications for the interior. Geological Society of America Annual Meeting, Salt Lake City, October 13–16, 2005, Abstracts with Programs, 37, no. 7, 92.Google Scholar
Kieffer, S. W. (1982). Dynamics and thermodynamics of volcanic eruptions: implications for the plumes on Io. In Satellites of Jupiter, ed. D., Morrison. Tucson: University of Arizona Press, pp. 647–723.Google Scholar
Kieffer, S. W., R., Lopes-Gautier, A., McEwen, et al. (2000). Prometheus: Io's wandering plume. Science, 288, 1204–8.CrossRefGoogle ScholarPubMed
Kilburn, C. R. J. (2000). Lava flows and flow fields. In Encyclopedia of Volcanoes, ed. H., Sigurdsson. San Diego: Academic Press, pp. 291–305.Google Scholar
Kirk, R. L., L. A., Soderblom, R. H., Brown, et al. (1995). Triton's plumes: discovery, characteristics, and models. In Neptune and Triton, ed. D. P., Cruikshank. Tucson: University of Arizona Press, pp. 949–89.Google Scholar
Kivelson, M. G., K. K., Khurana, C. T., Russell, et al. (2001). Magnetized or unmagnetized: ambiguity persists following Galileo's encounters with Io in 1999 and 2000. Journal of Geophysical Research, 106, 26121–36.CrossRefGoogle Scholar
Klassen, K. P., M. J. S., Belton, H. H., Breneman, et al. (1997). Inflight performance characteristics, calibration, and utilization of the Galileo solid-state imaging camera. Optical Engineering, 36, 3001–27.Google Scholar
Klassen, K. P., H. H., Breneman, A. A., Simon-Miller, et al. (2003). Operations and calibration of the solid-state imaging system during the Galileo extended mission at Jupiter. Optical Engineering, 42, 494–509.Google Scholar
Kliore, A., D. L., Cain, G., Fjeldbo, et al. (1974). Preliminary results on the atmospheres of Io and Jupiter from the Pioneer 10 S-Band Occultation Experiment. Science, 183, 323–4.CrossRefGoogle ScholarPubMed
Kliore, A. J., G., Fjeldbo, B. L., Seidel, et al. (1975). The atmosphere of Io from Pioneer 10 radio occultation measurements. Icarus, 24, 407–10.CrossRefGoogle Scholar
Knox, K. T., and B. J., Thompson. (1974). Recovery of images from atmospherically degraded short-exposure photographs. Astrophysical Journal, 193, L45–L48.CrossRefGoogle Scholar
Knudson, K., and D. L., Katz. (1979). Fluid Dynamics and Heat Transfer. Huntingdon, NY: Robert E. Krieger.Google Scholar
Kumar, S. (1979). The stability of an SO2 atmosphere on Io. Nature, 280, 758–60.CrossRefGoogle Scholar
Kupo, I., Y., Mekler, and A., Eviatar. (1976). Detection of ionized sulfur in the jovian magnetosphere. Astronomical Journal. 205, L51–L53.Google Scholar
Küppers, M., and N. M., Schneider. (2000). Discovery of chlorine in the Io torus. Geophysical Research Letters, 27, 513.CrossRefGoogle Scholar
Kuskov, O. L., and V. A., Kronrod. (2001a). Core sizes and internal structure of Earth's and Jupiter's satellites. Icarus, 151, 204–27.CrossRefGoogle Scholar
Kuskov, O. L., and V. A., Kronrod. (2001b). L- and LL-chondritic models of the chemical composition of Io. Astronomicheskii Vestnik, 35, 198.Google Scholar
Kyle, P. R., K., Meeker, and D., Finnegan. (1990). Emission rates of sulfur dioxide, trace gases and metals from Mount Erebus, Antarctica. Geophysical Research Letters, 17, 2125–8.CrossRefGoogle Scholar
Kyle, P. R., L. M., Sybeldon, W. C., McIntosh, et al. (1994). Sulfur dioxide emission rates from Mount Erebus, Antarctica. In Volcanological and Environmental Studies of Mount Erebus, Antarctica, Antarctic Research Series, vol. 66, ed. P., Kyle. Washington, DC: AGU, pp. 69–82.CrossRefGoogle Scholar
Lainey, V., and G., Tobie. (2005). New constraints on Io's and Jupiter's tidal dissipation. Icarus, 179, 485–9.CrossRefGoogle Scholar
Lawrence, T. W., D. M., Goodman, E. M., Johansson, et al. (1992). Speckle imaging of satellites at the Air Force Maui optical station. Applied Optics, 31, 6307–21.CrossRefGoogle ScholarPubMed
Le Guern, F., J., Carbonnelle, and H., Tazieff. (1979). Erta'Ale lava lake: heat and gas transfer to the atmosphere. Journal of Volcanology and Geothermal Research, 31, 17–31.Google Scholar
Lellouch, E., G., Paubert, J. I., Moses, et al. (2003). Volcanically emitted sodium chloride as a source for Io's neutral clouds and plasma torus. Nature, 421, 45–7.CrossRefGoogle ScholarPubMed
Leone, G., and L., Wilson. (2001). Density structure of Io and the migration of magma through its lithosphere. Journal of Geophysical Research, 106, 32983–96.CrossRefGoogle Scholar
Lesher, C. M., N. T., Arndt, and D. I., Groves. (1984). Genesis of komatiite-associated nickel sulphide deposits at Kambalda, Western Australia: a distal volcanic model. In Sulphide Deposits in Mafic and Ultramafic Rocks, ed. D. L., Buchanan and M. J., Jones. London: Institute of Mineralogy and Metallogy, pp. 70–80.Google Scholar
Lewis, J. S. (1982). Io – geochemistry of sulfur. Icarus, 50, 103–14.CrossRefGoogle Scholar
Lopes-Gautier, R., A. G., Davies, R., Carlson, et al. (1997). Hot spots on Io: initial results from Galileo's Near Infrared Mapping Spectrometer. Geophysical Research Letters, 24, 2439.CrossRefGoogle Scholar
Lopes-Gautier, R., A. S., McEwen, W. B., Smythe, et al. (1999). Active volcanism on Io: global distribution and variations in activity. Icarus, 140, 243–64.CrossRefGoogle Scholar
Lopes-Gautier, R., S., Douté, W. D., Smythe, et al. (2000). A close-up look at Io from Galileo's Near-Infrared Mapping Spectrometer. Science, 288, 1201–4.CrossRefGoogle Scholar
Lopes, R. M. C., L. W., Kamp, S., Doute, et al. (2001). Io in the near infrared: Near-Infrared Mapping Spectrometer (NIMS) results from the Galileo flybys in 1999 and 2000. Journal of Geophysical Research, 106, 33053–78.CrossRefGoogle Scholar
Lopes, R. M. C., L. W., Kamp, W. D., Smythe, et al. (2004). Lava lakes on Io: observations of Io's volcanic activity from Galileo NIMS during the 2001 fly-bys. Icarus, 169, 140–74.CrossRefGoogle Scholar
Lunine, J. I., and D. J., Stevenson. (1985). Physics and chemistry of sulfur lakes on Io. Icarus, 64, 345–67.CrossRefGoogle Scholar
Lydersen, A. L. (1979). Fluid Flow and Heat Transfer. Hoboken, NJ: Wiley.Google Scholar
Macintosh, B., D., Gavel, S., Gibbard, et al. (1997). Volcanoes on Io: high-resolution infrared images using speckle interferometry with the Keck telescope. Bulletin of the American Astronomical Society, 29, 745.Google Scholar
Macintosh, B. A., D., Gavel, S. G., Gibbard, et al. (2003). Speckle imaging of volcanic hotspots on Io with the Keck telescope. Icarus, 165, 137–43.CrossRefGoogle Scholar
MacKnight, W. J., and A. V., Tobolsky. (1965). Properties of polymeric sulphur. In Elemental Sulphur: Chemistry and Physics, ed. B., Meyer. New York: Interscience, pp. 174–212.Google Scholar
Mahoney, J. J., and M. F., Coffin (Eds.). (1997). Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism. AGU Geophysical Monograph, 100. Washington, DC: AGU.CrossRef
Malin, M. C. (1980). The length of Hawaiian lava flows. Geology, 8, 306–8.2.0.CO;2>CrossRefGoogle Scholar
Marchis, F., R., Prange, and T., Fusco. (2001). A survey of Io's volcanism by adaptive optics observations in the 3.8-micron thermal band (1996–1999). Journal of Geophysical Research, 106, 33141–60.CrossRefGoogle Scholar
Marchis, F., I., de Pater, A. G., Davies, et al. (2002). High-resolution Keck adaptive optics imaging of violent volcanic activity on Io. Icarus, 160, 124–31.CrossRefGoogle Scholar
Marchis, F., D., Le Mignant, F. H., Chaffee, et al. (2005). Keck AO survey of Io global volcanic activity between 2 and 5 microns. Icarus, 176, 96–122.CrossRefGoogle Scholar
Marsh, B. D. (1981). On the crystallinity, probability of occurrence, and rheology of lava and magmaContributions to Mineralogy and Petrology, 78, 85–98.CrossRefGoogle Scholar
Masursky, H., G. G., Schaber, L. A., Soderblom, et al. (1979). Preliminary geological mapping of Io. Nature, 280, 725–9.CrossRefGoogle Scholar
Matson, D. L., T. V, Johnson, and F. P., Fanale. (1974). Sodium D-line emission from Io: sputtering and resonant scattering hypothesisAstrophysical Journal, 192, L43–L46.CrossRefGoogle Scholar
Matson, D. L., G. A., Ransford, and T. V., Johnson. (1981). Heat flow from Io /JIJournal of Geophysical Research, 86, 1664–72.CrossRefGoogle Scholar
Matson, D. L., D. L., Blaney, T. V., Johnson, et al. (1998). Io and the early Earth. Lunar and Planetary Science Conference XXIX, Abstract 1650.
Matson, D. L., T. V., Johnson, G. J., Veeder, et al. (2001). Upper bound on Io's heat flow. Journal of Geophysical Research, 106, 33021–4.CrossRefGoogle Scholar
Matson, D. L., J. C., Castillo, C., Sotin, et al. (2006a). Enceladus' interior and geysers – possibility for hydrothermal geochemistry and N2 production. Lunar and Planetary Science Conference XXXVII, Abstract 2219.
Matson, D. L., A. G., Davies, G. J., Veeder, et al. (2006b). Io: Loki Patera as a magma sea. Journal of Geophysical Research (Planets), 111, E09002, doi:10. 1029/2006JE002703.
Matson, M., and J., Dozier. (1981). Identification of sub-resolution high temperature sources using a thermal IR sensor. Photogrammetric Engineering and Remote Sensing, 47, 1311–18.Google Scholar
Mattox, T. N., C., Heliker, J., Kauahikaua, et al. (1993). Development of the 1990 Kalapana flow field, Kilauea volcano, Hawaii. Bulletin of Volcanology, 55, 407–13.CrossRefGoogle Scholar
McAdams, W. H. (1954). Heat Transmission. New York: McGraw-Hill.Google Scholar
McBirney, A. R., and T., Murase. (1984). Rheological properties of magmas. Annual Review of Earth and Planetary Science, 12, 337–57.CrossRefGoogle Scholar
McCauley, J. F., L. A., Soderblom, and B. A., Smith. (1979). Erosional scarps on Io. Nature, 280, 736–8.CrossRefGoogle Scholar
McEwen, A. S. (1988). Global color and albedo variations on Io, Icarus, 73, 385–426.CrossRefGoogle Scholar
McEwen, A. S. (2003). High-resolution imaging and topography from JIMO: the HiRise model. In Forum on Jupiter Icy Moons Orbiter, LPI, June 12-14, 2003, Abstract 9007.
McEwen, A. S., and L. A., Soderblom. (1983). Two classes of volcanic plumes on Io. Icarus, 55, 191–217.CrossRefGoogle Scholar
McEwen, A. S., L. A., Soderblom, D. L., Matson, et al. (1985). Volcanic hot spots on Io – correlation with low-albedo calderas. Journal of Geophysical Research, 90, 12345–77.CrossRefGoogle Scholar
McEwen, A. S., L. A., Soderblom, T. V., Johnson, et al. (1988). The global distribution, abundance, and stability of SO2 on Io. Icarus, 75, 450–78.CrossRefGoogle Scholar
McEwen, A. S., J. I., Lunine, and M. H., Carr. (1989). Dynamic geophysics of Io. In NASA Special Publication Series, NASA-SP-494, ed. J. S. M., Belton and J., Rahe. Washington, DC: NASA, pp. 11–46.Google Scholar
McEwen, A. S., N. R., Isbell, and J. C., Pearl. (1992). Io thermophysics: new models with Voyager I thermal IR spectra. Lunar and Planetary Science Conference XXIII, Abstract, 881–2.
McEwen, A. S., N. R., Isbell, K. E., Edwards, et al. (1996). Temperatures on Io: implications to geophysics, volcanology, and volatile transport. Lunar and Planetary Science Conference XXVII, Abstract, 843–4.Google Scholar
McEwen, A. S., D. P., Simonelli, D. R., Senske, et al. (1997). High-temperature hot spots on Io as seen by the Galileo Solid State Imaging (SSI) experiment. Geophysical Research Letters, 24, 2443.CrossRefGoogle Scholar
McEwen, A. S., L., Keszthelyi, P., Geissler, et al. (1998a). Active volcanism on Io as seen by Galileo SSI. Icarus, 135, 181–219.CrossRefGoogle Scholar
McEwen, A. S., L., Keszthelyi, J. R., Spencer, et al. (1998b). High-temperature silicate volcanism on Jupiter's moon Io. Science, 281, 87–90.CrossRefGoogle ScholarPubMed
McEwen, A. S., R., Lopes-Gautier, L., Keszthelyi, et al. (2000a). Extreme volcanism on Jupiter's moon Io. In Environmental Effects on Volcanic Eruptions: From Deep Oceans to Deep Space, ed. J., Zimbelman and T. K., Gregg. New York: Springer, pp. 179–204.Google Scholar
McEwen, A. S., M. J. S., Belton, H. H., Breneman, et al. (2000b). Galileo at Io: results from high-resolution imaging. Science, 288, 1193–8.CrossRef
McEwen, A. S., L. P., Keszthelyi, R., Lopes, et al. (2004). The lithosphere and surface of Io. In Jupiter: The Planet, Satellites and Magnetosphere, ed. F., Bagenal et al. Cambridge, UK: Cambridge University Press, pp. 307–28.Google Scholar
McKinnon, W. B. (2006). Formation time of the Galilean satellites from Callisto's state of partial differentiation. Lunar and Planetary Science Conference XXXVII, Abstract 2444.
McKinnon, W. B., P. M., Schenk, and A. J., Dombard. (2001). Chaos on Io: a model of formation of mountain blocks by crustal heating, melting, and tilting. Geology, 29, 103–6.2.0.CO;2>CrossRefGoogle Scholar
McLeod, B. A., D. W., McCarthy, Jr., and J., Freeman. (1991). Global high-resolution imaging of hotspots on Io. Astronomical Journal, 102, 1485–9.CrossRefGoogle Scholar
Melchior, P. (1983). The Tides of Planet Earth, 2nd edn. Oxford, UK: Pergamon.Google Scholar
Meyer, B. (1976). Elemental sulfur. Chemical Reviews, 76, 367–88.CrossRefGoogle Scholar
Meyer, B. (1977). Sulfur, Energy and Environment. Amsterdam: Elsevier Scientific.Google Scholar
Milazzo, M. P., L. P., Keszthelyi, and A. S., McEwen. (2001). Observations and initial modeling of lava-SO2 interactions at Prometheus, Io. Journal of Geophysical Research, 106,33121–8.CrossRefGoogle Scholar
Milazzo, M. P., L. P., Keszthelyi, J., Radebaugh, et al. (2005). Volcanic activity at Tvashtar Catena, Io. Icarus, 179, 235–51.CrossRefGoogle Scholar
Monnereau, M., and F., Dubuffet. (2002). Is Io's mantle really molten? Icarus, 158, 450–9.CrossRefGoogle Scholar
Moore, H. J. (1987). Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In Volcanism in Hawaii, U.S. Geological Survey Professional Paper 1350, ed. R. W., Decker et al., pp. 1569–88.Google Scholar
Moore, J. M., A. S., McEwen, E. F., Albin, et al. (1986). Topographic evidence for shield volcanism on Io. Icarus, 67, 181–3.CrossRefGoogle Scholar
Moore, J. M., A. S., McEwen, M. P., Milazzo, et al. (2001). Landform degradation and slope processes on Io: the Galileo view. Journal of Geophysical Research, 106, 33223–40.CrossRefGoogle Scholar
Moore, W. B. (2001). Note: the thermal state of Io. Icarus, 154, 548–50.CrossRefGoogle Scholar
Morabito, L. A., S. P., Synnott, P. N., Kupferman, et al. (1979). Discovery of currently active extraterrestrial volcanism. Science, 204, 972.CrossRefGoogle ScholarPubMed
Morrison, D. (Ed.). (1982). Satellites of Jupiter. Tucson: University of Arizona Press.Google Scholar
Morrison, D., and D. P., Cruikshank. (1973). Thermal properties of the Galilean satellites. Icarus, 18, 224.CrossRefGoogle Scholar
Morrison, D., D. P., Cruikshank, and R. E., Murphy. (1972). Temperatures of Titan and the Galilean satellites at 20 microns. Bulletin of the American Astronomical Society, 4, 367.Google Scholar
Morrison, D., D., Pieri, T. V., Johnson, et al. (1979). Photometric evidence of long-term stability of albedo and colour markings on Io. Nature, 280, 753–5.CrossRefGoogle Scholar
Mouginis-Mark, P., and N., Domergue-Schmidt. (2000). Acquisition of satellite data for volcano studies. In Remote Sensing of Volcanic Activity, ed. P., Mouginis-Mark et al. Washington, DC: American Geophysical Union, pp. 9–24.CrossRefGoogle Scholar
Mouginis-Mark, P., J., Crisp, and J., Fink (Eds.). (2000). Remote Sensing of Active Volcanism. AGU Monograph Series, 116. Washington, DC: American Geophysical Union.CrossRef
Murase, T., and A. R., McBirney. (1970). Viscosity of lunar lavas. Science, 167, 1491–3.CrossRefGoogle ScholarPubMed
Murchie, S., R. W., Arvidson, K., Beisser, et al. (2003). CRISM: Compact Reconnaissance Imaging Spectrometer for Mars on theMars Reconnaissance Orbiter. Sixth International Conference on Mars, 20–25 July 2003, Pasadena, CA, Abstract 3062.Google Scholar
Murray, J. B. (1975). New observations of surface markings on Jupiter's satellites. Icarus, 25, 397–404.CrossRefGoogle Scholar
Mysen, B. O. (1977). Solubility of volatiles in silicate melts under the pressure and temperature conditions of partial melting in the upper mantle. Proceedings of the AGU Chapman Conference on Partial Melting in the Upper Mantle, 1–12.Google Scholar
Nash, D., M., Carr, J., Gradie, et al. (1986). Io. In Satellites, ed. J., Burns and M. S., Matthews. Tucson: University of Arizona Press, pp. 629–88.Google Scholar
Nash, D. B., and F. P., Fanale. (1977). Io's surface composition based on reflectance spectra of sulfur/salt mixtures and proton-irradiation experiments. Icarus, 31, 40–80.CrossRefGoogle Scholar
Nash, D. B., and R. R., Howell. (1989). Hydrogen sulfide on Io – evidence from telescopic and laboratory infrared spectra. Science, 244, 454–7.CrossRefGoogle ScholarPubMed
Nelson, R. M., and W., Hapke. (1978). Spectral reflectivities of the Galilean satellites and Titan, 0.32 to 0.86 micrometers. Icarus, 36, 304–29.CrossRefGoogle Scholar
Nelson, R. M., and W. D., Smythe. (1986). Spectral reflectance of solid sulfur trioxide (0.25–5.2 micron) – implications for Jupiter's satellite Io. Icarus, 66, 181–7.CrossRefGoogle Scholar
Nelson, R. M., D. C., Pieri, S. M., Baloga, et al. (1983). The reflection spectrum of liquid sulfur – implications for Io. Icarus, 56, 409–13.CrossRefGoogle Scholar
Newhall, C. G., and D., Dzurisin. (1988). Historical unrest at large calderas of the world, U.S. Geological Survey Bulletin 1855.Google Scholar
O'Neil, W. J., N. E., Ausman, J. A., Gleason, et al. (1997). Project Galileo at Jupiter. Paper presented at the 47th International Astronautical Congress, Beijing, China, October 7–11, 1996, published by International Astronautical Federation, Paris.Google Scholar
O'Reilly, T. C., and G. F., Davies. (1981). Magma transport of heat on Io – a mechanism allowing a thick lithosphere. Geophysical Research Letters, 8, 313–16.CrossRefGoogle Scholar
Ojakangas, G. W., and D. J., Stevenson. (1986). Episodic volcanism of tidally heated satellites with application to Io. Icarus, 66, 341–58.CrossRefGoogle Scholar
Oppenheimer, C. (1991). Lava flow cooling estimated from Landsat thematic mapper infrared data – the Lonquimay eruption (Chile, 1989). Journal of Geophysical Research (Solid Earth), 96, 21865–78.Google Scholar
Oppenheimer, C., and P., Francis. (1997). Remote sensing of heat, lava and fumarole emissions from Erta'Ale volcano, Ethiopia. International Journal of Remote Sensing, 18, 1661–92.CrossRefGoogle Scholar
Oppenheimer, C. M. M., and D. A., Rothery. (1991). Infrared monitoring of volcanoes by satellite. Journal of the Geological Society, 148, 563–9.CrossRefGoogle Scholar
Oppenheimer, C., and D., Stevenson. (1989). Liquid sulphur lakes at Poas volcano. Nature, 342, 790–3.CrossRefGoogle Scholar
Parfitt, E. A. (1991). The role of rift zone storage in controlling the site and timing of eruptions and intrusions of Kilauea volcano, Hawaii. Journal of Geophysical Research, 96, 10101–12.CrossRefGoogle Scholar
Parman, S. W., J. C., Dann, T. L., Grove, et al. (1997). Emplacement conditions of komatiite magmas from the 3.49 Ga Komati formation, Barberton Greenstone Belt, South Africa. Earth and Planetary Science Letters, 150, 303–23.CrossRefGoogle Scholar
Peale, S. J. (1986). Orbital resonances, unusual configurations and exotic rotation states among the planetary satellites. In Satellites, ed. J. A., Burns and M. S., Matthews. Tucson: University of Arizona Press, pp. 159–223.Google Scholar
Peale, S. J. (1989). Some unsolved problems in evolutionary dynamics in the Solar System. Celestial Mechanics and Dynamical Astronomy, 46, 253–75.CrossRefGoogle Scholar
Peale, S. J. (2003). Tidally induced volcanism. Celestial Mechanics and Dynamical Astronomy, 87, 129–55.CrossRefGoogle Scholar
Peale, S. J., P., Cassen, and R. T., Reynolds. (1979). Melting of Io by tidal dissipation. Science, 203, 892–4.CrossRefGoogle ScholarPubMed
Pearl, J., and W. M., Sinton. (1982). Hot spots of Io. In Satellites of Jupiter, ed. D., Morrison. Tucson: University of Arizona Press, pp. 724–55.Google Scholar
Pearl, J., R., Hanel, L., Horn, et al. (1979a). The jovian satellites as seen from Voyager IRIS. Bulletin of the American Astronomical Society, 11, 585.Google Scholar
Pearl, J., R., Hanel, V., Kunde, et al. (1979b). Identification of gaseous SO2 and new upper limits for other gases on Io. Nature, 280, 755–8.CrossRefGoogle Scholar
Pearl, J. C. (1985). Io: Amaterasu Patera is hot. Bulletin of the American Astronomical Society, 17, 691.Google Scholar
Pearlman, J. S., P. S., Barry, C. C., Segal, et al. (2003). Hyperion, a space-based imaging spectrometer. IEEE Transactions on Geoscience and Remote Sensing, 41, 1160–72.CrossRefGoogle Scholar
Peck, D., T. L., Wright, and J. G., Moore. (1966). Crystallization of tholeiitic basalt in Alae lava lake, Hawaii. Bulletin of Volcanology, 29, 629–56.Google Scholar
Peck, D. L. (1978). Cooling and vesiculation of Alae lava lake, Hawai'i. U.S. Geological Survey Professional Paper 935-B, p. 59.
Peck, D. L., M. S., Hamilton, and H. R., Shaw. (1977). Numerical-analysis of lava lake cooling models 2: application to Alae lava lake, Hawaii. American Journal of Science, 277, 415–37.CrossRefGoogle Scholar
Peck, D. L., T. L., Wright, and R. W., Decker. (1979). Lava lakes of Kilauea. Scientific American, 241, 114–22.CrossRefGoogle Scholar
Peleg, M., and C. B., Alcock. (1974). Mechanism of vaporization and morphological changes of single-crystals of alumina and magnesia at high-temperatures. High Temperature Science, 6, 52–63.Google Scholar
Pieri, D. C., and S. M., Baloga. (1986). Eruption rate, area and length relationships for some Hawaiian lava flows. Journal of Volcanology and Geothermal Research, 30, 29–45.CrossRefGoogle Scholar
Pieri, D. C., R. M., Nelson, S. M., Baloga, et al. (1984). Sulfur flows of Ra Patera, Io. Icarus, 60, 685–700.CrossRefGoogle Scholar
Pieri, D. C., L. S., Glaze, and M. J., Abrams. (1990). Thermal radiance observations of an active lava flow during the June 1984 eruption of Mount Etna. Geology, 18, 1018–22.2.3.CO;2>CrossRefGoogle Scholar
Pike, R. J., and G. D., Clow. (1981). Revised classification of terrestrial volcanoes and catalog of topographic dimensions, with new results on edifice volume. U.S. Geological Survey Open File Report 81–1038, p. 40.
Pilcher, C. B., S. T., Ridgeway, and T. B., McCord. (1972). Galilean satellites: identification of water frost. Science, 178, 1087–9.CrossRefGoogle ScholarPubMed
Pinkerton, H., and R. S. J., Sparks. (1976). The 1975 sub-terminal lavas, Mt. Etna: a case history of the formation of a compound lava field. Journal of Volcanology and Geothermal Research, 1, 167–82.CrossRefGoogle Scholar
Pinkerton, H., and L., Wilson. (1994). Factors controlling the lengths of channel-fed lava flows. Bulletin of Volcanology, 56, 108–20.CrossRefGoogle Scholar
Pollack, J. B., F. C., Witteborn, E. F., Erickson, et al. (1978). Near-infrared spectra of the Galilean satellites – observations and compositional implications. Icarus, 36, 271–303.CrossRefGoogle Scholar
Porco, C. C., R. A., West, A., McEwen, et al. (2003). Cassini imaging of Jupiter's atmosphere, satellites, and rings. Science, 299, 1541–7.CrossRefGoogle ScholarPubMed
Porco, C. C., P., Helfenstein, P. C., Thomas, et al. (2006). Cassini observes the active south pole of Enceladus. Science, 311, 1393–401.CrossRefGoogle ScholarPubMed
Press, W. H., B. P., Flannery, S., Teukolsky, et al. (1992). Numerical Recipes: The Art of Scientific Computing. Cambridge, UK: Cambridge University Press.Google Scholar
Radebaugh, J., and A. S., McEwen. (2005). Correlating hotspots on Io with surface features using Galileo eclipse images. AAS/Division for Planetary Sciences Meeting Abstracts, 37, 58.14.Google Scholar
Radebaugh, J., L. P., Keszthelyi, A. S., McEwen, et al. (2001). Paterae on Io: a new type of volcanic caldera? Journal of Geophysical Research, 106, 33005–20.CrossRefGoogle Scholar
Radebaugh, J., A. S., McEwen, L. P., Keszthelyi, et al. (2002). Lava lakes in Io's paterae: surface expressions of subsurface processes. AGU Fall Meeting Abstracts, 12, 12.Google Scholar
Radebaugh, J., A. S., McEwen, M. P., Milazzo, et al. (2004). Observations and temperatures of Io's Pele Patera from Cassini and Galileo spacecraft images. Icarus, 169, 65–79.CrossRefGoogle Scholar
Rampino, M. R., and R. B., Stothers. (1988). Flood basalt volcanism during the past 250 million years. Science, 241, 663–8.CrossRefGoogle ScholarPubMed
Ramsey, M., and J., Dehn. (2004). Spaceborne observations of the 2000 Bezymianny, Kamchatka eruption: the integration of high-resolution ASTER data into near real-time monitoring using AVHRR. Journal of Volcanology and Geothermal Research, 135, 127–46.CrossRefGoogle Scholar
Ramsey, M. S., and L. P., Flynn. (2004). Strategies, insights, and the recent advances in volcanic monitoring and mapping with data from NASA's Earth Observing System. Journal of Volcanology and Geothermal Research, 135, 1–11.CrossRefGoogle Scholar
Rathbun, J., and J. R., Spencer. (2006). Loki, Io: groundbased observations and a model for periodic overturn. Lunar and Planetary Science Conference XXXVII, Abstract 2365.
Rathbun, J. A., and J. R., Spencer. (2005). Loki, Io: A model for the change from periodic behavior. AAS/Division for Planetary Sciences Meeting Abstracts, 37, 58.15.Google Scholar
Rathbun, J. A., J. R., Spencer, A. G., Davies, et al. (2002). Loki, Io: a periodic volcano. Geophysical Research Letters, 29, no. 10, 84–8, doi:I0.1029/2002GL014747.CrossRefGoogle Scholar
Rathbun, J. A., J. R., Spencer, L. K., Tamppari, et al. (2004). Mapping of Io's thermal radiation by the Galileo photopolarimeter-radiometer (PPR) instrument. Icarus, 169, 127–39.CrossRefGoogle Scholar
Rau, H., T. R. N., Kutty, and J. R. F., Guedes de Caravalho. (1973). Thermodynamics of sulfur vapor. Journal of Chemical Thermodynamics, 5, 833–44.CrossRefGoogle Scholar
Reynolds, R. T., P., Cassen, and S. J., Peale. (1980). Io – energy constraints and plume volcanism, Icarus, 44, 234–9.CrossRefGoogle Scholar
Richter, D. H., J. P., Eaton, K. J., Murata, et al. (1970). The 1959–1960 eruption of Kilauea Volcano, Hawai'i. U.S. Geological Survey Professional Paper 537-E, p. 73.Google Scholar
Ross, M. N., and G., Schubert. (1985). Tidally forced viscous heating in a partially molten Io. Icarus, 64,391–400.CrossRefGoogle Scholar
Ross, M. N., G., Schubert, T., Spohn, et al. (1990). Internal structure of Io and the global distribution of its topography. Icarus, 85, 309–25.CrossRefGoogle Scholar
Rothery, D. A., and C., Oppenheimer. (1994). Monitoring Mount Erebus by satellite remote sensing. In Volcanological and Environmental Studies of Mount Erebus, Antarctica, Antarctic Research Series, vol. 66, ed. P., Kyle. Washington, DC: AGU, pp. 51–6.Google Scholar
Rothery, D. A., P. W., Francis, and C. A., Wood. (1988). Volcano monitoring using short wavelength infrared data from satellites. Journal of Geophysical Research, 93, 7993–8008.CrossRef
Rothery, D. A., T. L., Babbs, A. J. L., Harris, et al. (1996). Colored lava flows on the Earth: a warning to Io volcanologists. Journal of Geophysical Research, 101, 26131–6.CrossRefGoogle Scholar
Rowan, L. R., and R. W., Clayton. (1993). The three-dimensional structure of Kilauea volcano, Hawai'i, from travel time tomography. Journal of Geophysical Research, 98, 4355–75.CrossRefGoogle Scholar
Rowland, S. K., A. J. L., Harris, and H., Garbeil. (2004). Effects of martian conditions on numerically modeled, cooling-limited, channelized lava flows. Journal of Geophysical Research (Planets), 109, E10010, doi:10.1029/2004JE002288.CrossRefGoogle Scholar
Rubero, P. A. (1964). The effect of hydrogen sulfide on the viscosity of sulfur. Journal of Chemical and Engineering Data, 9, 481–606.CrossRefGoogle Scholar
Rubin, A. M. (1993). Dikes vs. diapirs in viscoelastic rock. Earth and Planetary Science Letters, 19, 641–59.Google Scholar
Russell, E. E., F. G., Brown, R. A., Chandos, et al. (1992). Galileo photopolarimeter/radiometer experiment. Space Science Reviews, 60, 531–63.CrossRefGoogle Scholar
Russell, S. S., M., Gounelle, and R., Hutchinson. (2001). Origin of short-lived radionuclides. Philosophical Transactions of the Royal Society of London, 359, 1994–2004.Google Scholar
Sagan, C. (1979). Sulphur flows on Io. Nature, 280, 750–3.CrossRefGoogle Scholar
Sanloup, C., F., Guyot, P., Gillet, et al. (2000). Density measurements of liquid Fe-S alloys at high pressure. Geophysical Research Letters, 27, 811–14.CrossRefGoogle Scholar
Sanloup, C., F., Guyot, P., Gillet, et al. (2001). Physical properties of liquid Fe alloys at high pressure and their bearings on the nature of metallic planetary cores: implications for the Earth, Mars and the Galilean satellites. Lunar and Planetary Science Conference XXXII, Abstract 1877.
Sartoretti, P., M. A., McGrath, and F., Paresce. (1994). Disk-resolved imaging of Io with the Hubble Space Telescope. Icarus, 108, 272–84.CrossRefGoogle Scholar
Sartoretti, P., M. A., McGrath, A. S., McEwen, et al. (1995). Post-Voyager brightness variations on Io. Journal of Geophysical Research, 100, 7523–30.CrossRefGoogle Scholar
Schaber, G. G. (1980). The surface of Io – geologic units, morphology, and tectonics. Icarus, 43, 302–33.CrossRefGoogle Scholar
Schaber, G. G. (1982). The geology of Io. InSatellites of Jupiter, ed. D., Morrison. Tucson: University of Arizona Press, pp. 556–97.Google Scholar
Schaefer, L., and B., Fegley. (2004). A thermodynamic model of high temperature lava vaporization on Io. Icarus, 169, 216–41.CrossRefGoogle Scholar
Schenk, P., H., Hargitai, R., Wilson, et al. (2001). The mountains of Io: global and geological perspectives from Voyager and Galileo. Journal of Geophysical Research, 106, 33201–22.CrossRefGoogle Scholar
Schenk, P. M., and M. H., Bulmer. (1998). Origin of mountains on Io by thrust faulting and large-scale mass movements. Science, 279, 1514.CrossRefGoogle ScholarPubMed
Schenk, P. M., and D. A., Williams. (2004). A potential thermal erosion lava channel on Io. Geophysical Research Letters, 31, 23702.CrossRefGoogle Scholar
Schenk, P. M., and R. R., Wilson. (2003). Tectonic and regional topography of Io: a new high. Lunar and Planetary Science Conference XXIV, Abstract 2097.
Schenk, P. M., A., McEwen, A. G., Davies, et al. (1997). Geology and topography of Ra Patera, Io, in the Voyager era: prelude to eruption. Geophysical Research Letters, 24 2467.CrossRefGoogle Scholar
Schenk, P. M., R. R., Wilson, and A. G., Davies. (2004). Shield volcano topography and the rheology of lava flows on Io. Icarus, 169, 98–110.CrossRefGoogle Scholar
Schmitt, H.-U. (2004). Volcanism. Berlin: Springer.Google Scholar
Schmitt, B., and S., Rodriguez. (2003). Possible identification of local deposits of Cl2SO3 on Io from NIMS/Galileo spectra. Journal of Geophysical Research (Planets), 108, (E9), 5104, doi:10.1029/2002JE001988.Google Scholar
Schubert, G., T., Spohn, and R. T., Reynolds. (1986). Thermal histories, compositions and internal structures of the moons of the Solar System. In Satellites, ed. J., Burns and M. S., Matthews.Tucson: University of Arizona Press, pp. 224–292.Google Scholar
Schubert, G., D. L., Turcotte, and P., Olsen. (2001). Mantle Convection in the Earth and Planets. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Schubert, G., J. D., Anderson, T., Spohn, et al. (2004). Interior composition, structure and dynamics of the Galilean satellites. In Jupiter. The Planet, Satellites and Magnetosphere, ed. F., Bagenal et al. Cambridge, UK: Cambridge University Press, pp. 281–306.Google Scholar
Segatz, M., T., Spohn, M. N., Ross, et al. (1988). Tidal dissipation, surface heat flow, and figure of viscoelastic models of Io. Icarus, 75, 187–206.CrossRefGoogle Scholar
Self, S., R., Gertisser, T., Thordarson, et al. (2004). Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophysical Research Letters, 31, L20608, doi:10.1029/2004GL020925.CrossRefGoogle Scholar
Settle, M. (1979). Thermal buffering by the latent heat of crystallization. Proceedings of the Lunar and Planetary Science Conference X, Abstract, 10, 1107–9.Google Scholar
Shaw, H. R., and D. A., Swanson. (1970). Eruption and flow rates of flood basalts. In Proceedings of the Second Conference Columbia River Basalt Symposium, ed. E. H., Gilmour and D. A., Swanson.Cheney: East Washington State College Press, pp. 271–99.Google Scholar
Shornikov, S. I., I. Y., Archakov, and M. M., Shults. (1999). Mass-spectrometric study of evaporation and thermodynamic properties of silicon dioxide – II. determination of partial coefficients of silicon dioxide evaporation. Zhurnal Obshchei Khimii, 69, 197–206.Google Scholar
Sinton, W. M. (1980a). Io's 5 micron variability. Astrophysical Journal, 235, L49–L51.CrossRefGoogle Scholar
Sinton, W. M. (1980b). Io – are vapor explosions responsible for the 5-micron outbursts. Icarus, 43, 56–64.CrossRefGoogle Scholar
Sinton, W. M. (1981). The thermal emission spectrum of Io and a determination of the heat flux from its hot spots. Journal of Geophysical Research, 86, 3122–8.CrossRefGoogle Scholar
Sinton, W. M., and C., Kaminski. (1988). Infrared observations of eclipses of Io, its thermophysical parameters, and the thermal radiation of the Loki volcano and environs. Icarus, 75, 207–32.CrossRefGoogle Scholar
Sinton, W. M., A. T., Tokunaga, E. E., Becklin, et al. (1980). Io – ground-based observations of hot spots. Science, 210, 1015–17.CrossRefGoogle ScholarPubMed
Sinton, W. M., D., Lindwall, F., Cheigh, et al. (1983). Io – the near-infrared monitoring program, 1979–1981. Icarus, 54, 133–57.Google Scholar
Sinton, W. M., J. D., Goguen, T., Nagata, et al. (1988). Infrared polarization measurements of Io in 1986. Astronomical Journal, 96, 1095–105.CrossRefGoogle Scholar
Skinner, B. J. (1970). A sulfur lava flow on Mauna Loa. Pacific Science, 24, 144–5.Google Scholar
Smith, B. A., E. M., Shoemaker, S. W., Kieffer, et al. (1979a). The role of SO2 in volcanism on Io. Nature, 280, 738–43.CrossRefGoogle Scholar
Smith, B. A., L. A., Soderblom, R., Beebe, et al. (1979b). The Galilean satellites and Jupiter – Voyager 2 imaging science results. Science, 206, 927–50.CrossRefGoogle ScholarPubMed
Smith, B. A., L. A., Soderblom, T. V., Johnson, et al. (1979c). The Jupiter system through the eyes of Voyager 1. Science, 204, 951–7.CrossRefGoogle ScholarPubMed
Smith, B. A., L. A., Soderblom, D., Banfield, et al. (1989). Voyager 2 at Neptune: imaging science results. Science, 246, 1422–49.CrossRefGoogle ScholarPubMed
Smythe, W. D., and R. M., Nelson. (1985). Spectral reflectance of quenched sulfur glasses: implications for Io. Bulletin of the American Astronomical Society, 17, 920.Google Scholar
Smythe, W. D., R. M., Nelson, and D. B., Nash. (1979). Spectral evidence for SO2 frost or adsorbate on Io's surface. Nature, 280, 766.CrossRefGoogle Scholar
Smythe, W. D., R., Lopes-Gautier, A., Ocampo, et al. (1995). Galilean satellite observation plans for the Near-Infrared Mapping Spectrometer experiment on the Galileo spacecraft. Journal of Geophysical Research, 100, 18957–72.CrossRefGoogle Scholar
Smythe, W. D., R., Lopes-Gautier, S., Doute, et al. (2000). Evidence for massive sulfur dioxide deposit on Io. Bulletin of the American Astronomical Society, 32, 1047.Google Scholar
Soderblom, L. A., K. J., Becker, T. L., Becker, et al. (1999). Deconvolution of Galileo NIMS day-side spectra of Io into thermal, SO2, and non-SO2 components. Lunar and Planetary Science Conference XXX, Abstract 1901.
Sohl, F., T., Spohn, D., Breuer, et al. (2002). Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus, 157, 104–19.CrossRefGoogle Scholar
Solomon, S. C. (1981). Thermal histories of the terrestrial planets. In Basaltic Volcanism Study Project: Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon, pp. 1129–234.Google Scholar
Sotin, C., R., Jaumann, B. J., Buratti, et al. (2005). Release of volatiles from a possible cryovolcano from near-infrared imaging of Titan. Nature, 435, 786–9.CrossRefGoogle ScholarPubMed
Sparks, R. S., M. I., Bursik, S. N., Carey, et al. (1997). Volcanic Plumes. Chichester, UK: Wiley.Google Scholar
Sparks, R. S. J. (1978). The dynamics of bubble formation and growth in magmas: a review and analysis. Journal of Volcanology and Geothermal Research, 3, 1–37.CrossRefGoogle Scholar
Spencer, J. R., and N. M., Schneider. (1996). Io on the eve of the Galileo mission. Annual Review of Earth and Planetary Science, 24, 125–90.CrossRefGoogle Scholar
Spencer, J. R., M. A., Shure, M. E., Ressler, et al. (1990). Discovery of hotspots on Io using disk-resolved infrared imaging. Nature, 348, 618–21.CrossRefGoogle Scholar
Spencer, J. R., B. E., Clark, D., Toomey, et al. (1994). Io hot spots in 1991 – results from Europa occultation photometry and infrared imaging. Icarus, 107, 195.CrossRefGoogle Scholar
Spencer, J. R., W. M., Calvin, and M. J., Person. (1995a). CCD spectra of the Galilean satellites: molecular oxygen on Ganymede. Journal of Geophysical Research, 100, 19049–56.CrossRefGoogle Scholar
Spencer, J. R., A. S., McEwen, D. B., Nash, et al. (1995b). A major albedo change on Io in 1994–1995. Bulletin of the American Astronomical Society, 27, 1160.Google Scholar
Spencer, J. R., A. S., McEwen, M. A., McGrath, et al. (1997a). Volcanic resurfacing of Io: post-repair HST imaging. Icarus, 127, 221–37.CrossRefGoogle Scholar
Spencer, J. R., P., Sartoretti, G. E., Ballester, et al. (1997b). Pele plume (Io): observations with the Hubble Space Telescope. Geophysical Research Letters, 24, 2471.CrossRefGoogle Scholar
Spencer, J. R., J. A., Stansberry, C., Dumas, et al. (1997c). History of high-temperature Io volcanism: February 1995 to May 1997. Geophysical Research Letters, 24, 2451.CrossRefGoogle Scholar
Spencer, J. R., K. L., Jessup, M. A., McGrath, et al. (2000a). Discovery ofgaseous S2 in Io's Pele plume. Science, 288, 1208–10.CrossRefGoogle ScholarPubMed
Spencer, J. R., J. A., Rathbun, L. D., Travis, et al. (2000b). Io's thermal emission from the Galileo Photopolarimeter-Radiometer. Science, 288, 1198–201.CrossRefGoogle ScholarPubMed
Spencer, J. R., F., Bagenal, A. G., Davies, et al. (2002). The future of Io exploration. In The Future of Solar System Exploration (2003–2013) – First Decadal Study Contributions, 201–16.Google Scholar
Spencer, J. R., J. C., Pearl, M., Segura, et al. (2006). Cassini encounters Enceladus: background and the discovery of a south polar hot spot. Science, 311, 1401–5.CrossRefGoogle ScholarPubMed
SSES. (2003). Solar System Exploration Survey-Space Studies Board, National Research Council, New Frontiers in the Solar System: An Integrated Exploration Strategy. Washington, DC: National Academy Press, 248 pp.
Stansberry, J. A., J. R., Spencer, R. R., Howell, et al. (1997). Violent silicate volcanism on Io in 1996. Geophysical Research Letters, 24, 2455.CrossRefGoogle Scholar
Stebbins, J. (1927). The light variations of the satellites of Jupiter and their applications to measures of the solar constant. Lick Observatory Bulletin, 13, 1–11.Google Scholar
Stebbins, J., and T. S., Jacobson. (1928). Further photometric measures of Jupiter's satellites and Uranus, with tests for the solar constant. Lick Observatory Bulletin, 13, 180–95.Google Scholar
Stevenson, D. J., A. W., Harris, and J. I., Lunine. (1986). Origins of satellites. In Satellites ed. J., Burns and M. S., Matthews.Tucson: University of Arizona Press, pp. 39–88.Google Scholar
Stone, E. C., and A. L., Lane. (1979a). Voyager 1encounter with the jovian system. Science, 204, 945–48.Google ScholarPubMed
Stone, E. C., and A. L., Lane. (1979b). Voyager 2encounter with the jovian system. Science, 206, 925–27.Google ScholarPubMed
Strom, R. G., N. M., Schneider, R. J., Terrile, et al. (1981). Volcanic eruptions on Io. Journal of Geophysical Research, 86, 8593–620.CrossRefGoogle Scholar
Swanson, D. A., W. A., Duffield, D. B., Jackson, et al. (1979). Chronological narrative of the 1969–1971 Mauna Ulu eruption of Kilauea volcano, Hawai'i. U.S. Geological Survey Professional Paper, 1056, p. 55.Google Scholar
Symonds, R. B., W. I., Rose, G., Bluth, et al. (1994). Volcanic gas studies: methods, results, and applications. In Volatiles in Magmas: Reviews in Mineralogy, vol. 30, ed. M. R., Carroll and J. R., Holloway.Mineralogical Society of America, pp. 1–60.Google Scholar
Tackley, P. J., G., Schubert, G. A., Glatzmaier, et al. (2001). Three-dimensional simulations of mantle convection in Io. Icarus, 149, 79–93.CrossRefGoogle Scholar
Takahashi, E. (1986). Melting of a dry komatiite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. Journal of Geophysical Research, 91, 9367–82.CrossRefGoogle Scholar
Takahashi, E. (1990). Speculations on the archean mantle – missing link between komatiite and depleted garnet peridotite. Journal of Geophysical Research – Solid Earth and Planets, 95, 15941–54.CrossRefGoogle Scholar
Taylor, G., B., O'Leary, T. V., Flandern, et al. (1971). Occultation of Beta Scorpii C by Io on May 14, 1971. Nature, 234, 405–6.CrossRefGoogle Scholar
Tazieff, H. (1994). Permanent lava lakes: observed facts and induced mechanisms. Journal of Volcanology and Geothermal Research, 63, 3–11.CrossRefGoogle Scholar
Thompson, D. (2000). Volcano Cowboys. New York: Thomas Dunne Books.Google Scholar
Thorarinsson, S. (1969). The Lakagigar eruption of 1783. Bulletin of Volcanology, 33, 910–27.Google Scholar
Thordarson, T., and S., Self. (1993). The Laki (Skaftár Fires) and Grimsvötn eruptions in 1783–1784. Bulletin of Volcanology, 55, 233–62.Google Scholar
Thordarson, T., and S., Self. (1998). The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? Journal of Geophysical Research, 103, 27411–45.CrossRefGoogle Scholar
Thordarson, T., S., Self, N., Óskarsson, et al. (1996). Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin of Volcanology, 58, 205–25.CrossRefGoogle Scholar
Thornber, C. (2003). Magma-reservoir processes revealed by geochemistry of the Pu'u ‘O'o-Kupaianaha eruption. In The Pu'u 'O'o-Kupaianaha Eruption of Kilauea Volcano, Hawai'i: The First 20 Years, ed. C., Heliker et al. U.S.Geological Survey Professional Paper 1676, pp. 121–36.Google Scholar
Tilling, R. I. (1987). Fluctuations in surface height of active lava lakes during the 1972–1974 Mauna Ulu eruption, Kilauea volcano, Hawai'i. Journal of Geophysical Research, 92, 13721–30.CrossRefGoogle Scholar
Tobolsky, A. V., and A., Eisenberg. (1959). Equilibrium polymerization of sulfur. Journal of the American Chemical Society, 81, 780–2.Google Scholar
Touloukian, Y. S., and C. Y., Ho (Eds.). (1970). Thermophysical Properties of Matter. New York and Washington, DC: IFI/Plenum.
Touro, F. J., and T. K., Wiewiorowski. (1966a). Molten sulfur chemistry 2. Solubility of sulfur dioxide in molten sulfur. Journal of Physical Chemistry, 70, 3531–5.CrossRefGoogle Scholar
Touro, F. J., and T. K., Wiewiorowski. (1966b). Viscosity-chain length relationship in molten sulfur systems. Journal of Physical Chemistry, 70, 239–41.CrossRefGoogle Scholar
Trafton, L. (1975a). High-resolution spectra of Io's sodium emission. Astrophysical Journal, 202, L107-L112.CrossRefGoogle Scholar
Trafton, L. (1975b). Detection of a potassium cloud near Io. Nature, 258, 690–2.CrossRefGoogle Scholar
Trafton, L., T., Parkinson, and W., Macy, Jr. (1974). The spatial extent of sodium emission around Io. Astrophysical Journal, 190, L85.CrossRefGoogle Scholar
Tuller, W. N. (1954). The Sulphur Data Book. New York: McGraw-Hill.Google Scholar
Turcotte, D., and G., Schubert. (1986). Geodynamics. Cambridge, UK: Cambridge University Press.Google Scholar
Turtle, E. P., W. L., Jaeger, L. P., Keszthelyi, et al. (2001). Mountains on Io: high-resolution Galileo observations, initial interpretations, and formation models. Journal of Geophysical Research, 106, 33175–200.CrossRefGoogle Scholar
Turtle, E. P., L. P., Keszthelyi, A. S., McEwen, et al. (2004). The final Galileo SSI observations of Io: orbits G28-I33, Icarus, 169, 3–28.CrossRefGoogle Scholar
Ungar, S. G., J. S., Pearlman, J. A., Mendenhall, et al. (2003). Overview of the Earth Observing One (EO-1) Mission. IEEE Transactions in Geoscience and Remote Sensing, 41, 1149–59.CrossRefGoogle Scholar
Urey, H. C. (1955). The cosmic abundance of potassium, uranium and thorium and the heat balance of the Earth, the Moon, and Mars. Proceedings of the National Academy of Sciences, 41, 127–44.CrossRefGoogle Scholar
Usselmann, T. M. (1975a). Experimental approach to the state of the core. Part 1. The liquidus relations of the Fe-rich portion of the Fe-Ni-S system from 30 to 100 kb. American Journal of Science, 275, 278–90.CrossRefGoogle Scholar
Usselmann, T. M. (1975b). Experimental approach to the state of the core. Part 2. Composition and thermal regime. American Journal of Science, 275, 291–303.CrossRefGoogle Scholar
Veeder, G. J., D. L., Matson, T. V., Johnson, et al. (1994). Io's heat flow from infrared radiometry: 1983–1993. Journal of Geophysical Research, 99, 17095–162.CrossRefGoogle Scholar
Veeder, G. J., D. L., Matson, T. V., Johnson, et al. (2004). The polar contribution to the heat flow of Io. Icarus, 169, 264–70.CrossRefGoogle Scholar
Voegele, A. F., T., Loerting, C. S., Tautermann, et al. (2004). Sulfurous acid (H2SO3) on Io? Icarus, 169, 242–9.CrossRef
Wadge, G. (1981). The variation of magma discharge during basaltic eruption. Journal of Volcanology and Geothermal Research, 11, 139–68.CrossRefGoogle Scholar
Wamsteker, W., R. L., Kroes, and J. A., Fountain. (1974). On the surface composition of Io. Icarus, 23, 417–24.CrossRefGoogle Scholar
Watanabe, T. (1940). Eruption of molten sulphur from the Siretoko-Iosan volcano, Hokkaido, Japan. Japanese Journal of Geology and Geography, 17, 289–310.Google Scholar
White, R. S., and D. P., McKenzie. (1995). Mantle plumes and flood basalts. Journal of Geophysical Research, 100, 17543–86.CrossRefGoogle Scholar
Wignall, P. B. (2001). Large igneous provinces and mass extinctions. Earth Science Reviews, 53, 1–33.CrossRefGoogle Scholar
Williams, D. A., A. G., Davies, L. P., Keszthelyi, et al. (2001a). The summer 1997 eruption at Pillan Patera on Io: implications for ultrabasic lava flow emplacement. Journal of Geophysical Research (Planets), 106, 33105–20.Google Scholar
Williams, D. A., R., Greeley, R. M. C., Lopes, et al. (2001b). Evaluation of sulfur flow emplacement on Io from Galileo data and numerical modeling. Journal of Geophysical Research, 106, 33161–74.CrossRefGoogle Scholar
Williams, D. A., R. C., Kerr, C. M., Lesher, et al. (2001c). Analytical/numerical modeling of komatiite lava emplacement and thermal erosion at Perseverance, Western Australia. Journal of Volcanology and Geothermal Research, 110, 27–55.CrossRefGoogle Scholar
Williams, D. A., J., Radebaugh, L. P., Keszthelyi, et al. (2002). Geologic mapping of the Chaac-Camaxtli region of Io from Galileo imaging data. Journal of Geophysical Research (Planets), 107 (E9), 5068, doi:10.1029/2001JE001821.CrossRefGoogle Scholar
Williams, D. A., P. M., Schenk, J. M., Moore, et al. (2004). Mapping of the Culann-Tohil region of Io from Galileo imaging data. Icarus, 169, 80–97.CrossRefGoogle Scholar
Williams, D. A., L. P., Keszthelyi, P. M., Schenk, et al. (2005). The Zamama-Thor region of Io: insights from a synthesis of mapping, topography, and Galileo spacecraft data. Icarus, 177, 69–88.CrossRefGoogle Scholar
Wilson, L., and J. W., Head. (1981). Ascent and eruption of basaltic magma on the Earth and Moon. Journal of Geophysical Research, 86, 2971–3001.CrossRefGoogle Scholar
Wilson, L., and J. W., Head. (1983). A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 302, 663–9.CrossRefGoogle Scholar
Wilson, L., and J. W., Head. (2001). Lava fountains from the 1999 Tvashtar Catena fissure eruption on Io: implications for dike emplacement mechanisms, eruption rates, and crustal structure. Journal of Geophysical Research, 106, 32997–3004.CrossRefGoogle Scholar
Wilson, L., and J. W., Head. (2003). Deep generation of magmatic gas on the Moon and implications for pyroclastic eruptions. Geophysical Research Letters, 30(12), 1605, doi:10.1029/2002GL016082.CrossRefGoogle Scholar
Wilson, L., and J. W., Head, III. (1994). Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews ofGeophysics, 32, 221–63.Google Scholar
Wilson, L., H., Pinkerton, J. W., Head, et al. (1993). A classification scheme for the morphology of lava flow fields. Lunar and Planetary Science Conference XXIV, Abstract, 1527–8.Google Scholar
Witteborn, F. E., J. D., Bregman, and J. B., Pollack. (1979). Io – an intense brightening near 5 micrometers. Science, 203, 643–6.CrossRefGoogle ScholarPubMed
Witteborn, E. W., M. O., Garcia, D. B., Jackson, et al. (1987). The Pu'u 'O'o eruption of Kilauea volcano, episodes 1–20, January 3, 1983, to June 8, 1984. In Volcanism in Hawai'i, USGS Professional Paper 1350, vol. 1, ed. R. W., Decker et al., pp. 471–508.
Wood, C. A. (1984). Calderas: a planetary perspective. Journal of Geophysical Research, 89, 8391–406.CrossRefGoogle Scholar
Wright, R., and L. P., Flynn. (2003). On the retrieval of lava flow surface temperatures from infrared satellite data. Geology, 31, 893–6.CrossRefGoogle Scholar
Wright, R., S., Blake, A. J. L., Harris, et al. (2001). A simple explanation for the space-based calculation of lava eruption rates. Earth and Planetary Science Letters, 192, 223–33.CrossRefGoogle Scholar
Wright, R., L. P., Flynn, and A. G., Davies. (2004a). The detailed surface thermal structure of active lava flows, domes, and lakes revealed by the Earth Observing-1 Hyperion. Abstract, IAVCEI General Assembly 2004, Pucon, Chile.
Wright, R., L. P., Flynn, H., Garbeil, et al. (2004b). MODVOLC: near-real-time thermal monitoring of global volcanism. Journal of Volcanology and Geothermal Research, 135, 29–49.CrossRefGoogle Scholar
Wright, T. L., and R. T., Okamura. (1977). Cooling and crystallization of tholeiitic basalt, 1965 Makaopuhi lava lake, Hawaii. U.S. Geological Survey Professional Paper 1004.
Wright, T. L., W. T., Kinoshita, and D. L., Peck. (1968). March 1965 eruption of Kilauea volcano and the formation of Makaopuhi lava lake. Journal of Geophysical Research, 73,3181–205.CrossRefGoogle Scholar
Wylie, P. J. (1988). Magma genesis, plate tectonics, and chemical differentiation of the Earth. Reviews of Geophysics, 26, 370–404.Google Scholar
Yamaguchi, Y., A., Kahle, H., Tsu, et al. (1998). Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Transactions on Geoscience and Remote Sensing, 36, 1062–71.CrossRefGoogle Scholar
Yoder, C. F. (1979). How tidal heating in Io drives the Galilean orbital resonance locks. Nature, 279, 767–70.CrossRefGoogle Scholar
Young, A. T. (1984). No sulfur flows on Io. Icarus, 58, 197–226.CrossRefGoogle Scholar
Zhang, J., D. B., Goldstein, P. L., Varghese, et al. (2003). Simulation of gas dynamics and radiation in volcanic plumes on Io. Icarus, 163, 182–97.CrossRefGoogle Scholar
Zinner, E., and C., Gopel. (2002). Aluminium-26 in H4 chondrites: implications for its production and its usefulness as a fine-scale chronometer for early Solar System events. Meteoritics and Planetary Science, 37, 1001–13.CrossRefGoogle Scholar
Zolotov, M. Y., and B., Fegley. (2000). Eruption conditions of Pele volcano on Io inferred from chemistry of its volcanic plume. Geophysical Research Letters, 27, 2789–92.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×