Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T10:46:18.850Z Has data issue: false hasContentIssue false

9 - Hyperbolic Dimension and Decomposition Complexity

Published online by Cambridge University Press:  27 August 2018

N. Broaddus
Affiliation:
Ohio State University
M. Davis
Affiliation:
Ohio State University
J. -F. Lafont
Affiliation:
Ohio State University
I. J. Ortiz
Affiliation:
Miami University
Get access

Summary

The aim of this chapter is to provide some new tools to aid the study of decomposition complexity, a notion introduced by Guentner, Tessera and Yu. In this chapter, three equivalent definitions for decomposition complexity are established. We prove that metric spaces with finite hyperbolic dimension have finite (weak) decomposition complexity, and we prove that the collection of metric families that are coarsely embeddable into Hilbert space is closed under decomposition. A method for showing that certain metric spaces do not have finite decomposition complexity is also discussed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×