Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-05T11:42:18.722Z Has data issue: false hasContentIssue false

9 - Titan's upper atmosphere: thermal structure, dynamics, and energetics

Published online by Cambridge University Press:  05 January 2014

R. V. Yelle
Affiliation:
University of Arizona
D. S. Snowden
Affiliation:
University of Arizona
I. C. F. Müller-Wodarg
Affiliation:
Imperial College London
Ingo Müller-Wodarg
Affiliation:
Imperial College London
Caitlin A. Griffith
Affiliation:
University of Arizona
Emmanuel Lellouch
Affiliation:
Observatoire de Paris, Meudon
Thomas E. Cravens
Affiliation:
University of Kansas
Get access

Summary

9.1 Introduction and some history

Titan, with its dense atmosphere, low gravity, weak solar insolation, and complex composition, provides a unique example of a planetary upper atmosphere. The large mass of the atmosphere, coupled with low gravity, results in a greatly extended atmosphere where the plane parallel assumption, nearly universal in terrestrial and giant planet atmosphere studies, no longer applies. Moreover, the weak gravity results in large escape rates that may play a significant role in upper atmospheric thermal balance. The weak solar insolation means that in many cases dynamical processes can dominate over solar processes, while at the same time the complex composition causes radiative cooling processes to be more important than in most other planetary upper atmospheres. Most of the time Titan orbits within Saturn's magnetosphere and the interaction with energetic particle populations may significantly alter the upper atmosphere. Measurements by the Cassini spacecraft have allowed us to greatly extend our knowledge of the thermal balance in Titan's upper atmosphere, although the main result so far may be the realization that the simple descriptions employed before Cassini fail to capture the complexity and variability of this enigmatic atmosphere. To understand the progress enabled by Cassini-Huygens measurements, we first review our knowledge of thermal balance in Titan's upper atmosphere based on observations by the Voyager spacecraft and ground-based telescopes.

Type
Chapter
Information
Titan
Interior, Surface, Atmosphere, and Space Environment
, pp. 322 - 354
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aboudan, A., Colombatti, G., Ferri, F., and Angrilli, F. 2008. Huygens Probe Entry Trajectory and Attitude Estimated Simultaneously with Titan Atmospheric Structure by Kalman Filtering. Planet. Space Sci., 56(Apr.), 573–585. doi:10.1016/j.pss.2007.10.006.Google Scholar
Achterberg, R. K., Conrath, B. J., Gierasch, P. J., et al. 2008. Titan's Middle-Atmospheric Temperatures and Dynamics Observed by the Cassini Composite Infrared Spectrometer. Icarus, 194(Mar.), 263–277. doi:10.1016/j.icarus.2007.09.029.Google Scholar
Ågren, K., Andrews, D. J., Buchert, S. C., et al. 2011. Detection of Currents and Associated Electric Fields in Titan's Ionosphere from Cassini Data. J. Geophys. Res., 116(A4), A04313.Google Scholar
Arridge, C. S., Andre, N., Bertucci, C. L., et al. 2011. Upstream of Saturn and Titan. Sp. Sci. Rev., 162(Dec.), 25–83. doi:10.1007/s11214-011-9849-x.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H., et al. 2010a. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 1. Formulation of the Titan Global Ionosphere-Thermosphere Model and Benchmark Simulations. J. Geophys. Res., 115(E12), E12002.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., et al. 2010b. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 2. Alternative Scenarios for Methane Escape. J. Geophys. Res., 115(Dec.), 12018.Google Scholar
Bell, J. M., Bougher, S. W., Waite, J. H. Jr., et al. 2011a. Simulating the One-Dimensional Structure of Titan's Upper Atmosphere: 3. Mechanisms Determining Methane Escape. J. Geophys. Res., 116(E), 11002.Google Scholar
Bell, J. M., Westlake, J., and Waite, J. H. 2011b. Simulating the Time-Dependent Response of Titan's Upper Atmosphere to Periods of Magnetospheric Forcing. Geophys. Res. Lett., 38(6), L06202.Google Scholar
Brandt, P. C., Dialynas, K., Dandouras, I., et al. 2012. The Distribution of Titan's High-Altitude (out to 50,000 km) Exosphere from Energetic Neutral Atom (ENA) Measurements by Cassini/INCA. Planet. Space Sci., 60(1), 107–114.Google Scholar
Broadfoot, A. L., Sandel, B. R., Shemansky, D. E., et al. 1981. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science, 212(Apr.), 206–211. doi:10.1126/science.212.4491.206.Google Scholar
Bruinsma, S. L., and Forbes, J. M. 2008. Medium- to Large-Scale Density Variability as Observed by CHAMP. Space Weather, 6(8), S08002.Google Scholar
Capalbo, F. J., Bénilan, Y., Yelle, R. V, et al. 2013. Solar Occultation by Titan Measured by Cassini/UVIS. Astrophys. J. Letts., Jan., submitted.Google Scholar
Coates, A. J., Crary, F. J., Lewis, G. R., et al. 2007. Discovery of Heavy Negative Ions in Titan's Ionosphere. Geophys. Res. Lett., 34(Nov.), 1–6.Google Scholar
Colombatti, G., Aboudan, A., Ferri, F., and Angrilli, F. 2008a. Huygens Probe Entry Dynamic Model and Accelerometer Data Analysis. Planet. Space Sci., 56(Apr.), 601–612. doi:10.1016/j.pss.2007.11.018.Google Scholar
Colombatti, G., Withers, P., Ferri, F., et al. 2008b. Reconstruction of the Trajectory of the Huygens Probe Using the Huygens Atmospheric Structure Instrument HASI). Planet. Space Sci., 56(Apr.), 586–600. doi:10.1016/j.pss.2007.11.017.Google Scholar
Creasey, J. E., Forbes, J. M., and Hinson, D. P. 2006. Global and Seasonal Distribution of Gravity Wave Activity in Mars' Lower Atmosphere Derived from MGS Radio Occultation Data. Geophys. Res. Lett., 33(1), L01803.Google Scholar
Cui, J., Galand, M., Yelle, R. V, et al. 2009. Diurnal Variations of Titan's Ionosphere. J. Geophys. Res., 114(A6), A06310.Google Scholar
Cui, J., Yelle, R. V, Strobel, D. F., et al. 2012. The CH4 Structure in Titan's Upper Atmosphere Revisited. J. Geophys. Res., 117(E), 11006.Google Scholar
de La Haye, V, Waite, J. H., Johnson, R. E., et al. 2007. Cassini Ion and Neutral Mass Spectrometer Data in Titan's Upper Atmosphere and Exosphere: Observation of a Suprathermal Corona. J. Geophys. Res., 112(June), 07309.Google Scholar
de La Haye, V, Waite, J. H., Cravens, T. E., et al. 2008. Heating Titan's Upper Atmosphere. J. Geophys. Res., 113(A), 11314.Google Scholar
Flasar, F. M., Samuelson, R. E., and Conrath, B. J.. 1981. Titan's Atmosphere: Temperature and Dynamics. Nature, 292(5825), 693–698.Google Scholar
Forbes, J. M., and Konopliv, A. 2007. Oscillation of Venus' Upper Atmosphere. Geophys. Res. Lett., 34(8), L08202.Google Scholar
Forget, F., Montmessin, F., Bertaux, J.-L., et al. 2009. Density and Temperatures of the Upper Martian Atmosphere Measured by Stellar Occultations with Mars Express SPICAM. J. Geophys. Res., 114(E1), E01004.Google Scholar
Fritts, D. C., and Alexander, M. J. 2003. Gravity Wave Dynamics and Effects in the Middle Atmosphere. Rev. Geophys., 41(Apr.), 1003. doi:10.1029/2001RG000106.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(Dec.), 785–791. doi:10.1038/nature04314.Google Scholar
Fulchignoni, M., Ferri, F., Angrilli, F., et al. 2005. In Situ Measurements of the Physical Characteristics of Titan's Environment. Nature, 438(7069), 785–791.Google Scholar
Gardner, L. C., and Schunk, R. W. 2011. Large-Scale Gravity Wave Characteristics Simulated with a High-Resolution Global Thermosphere-Ionosphere Model. J. Geophys. Res., 116(A6), A06303.Google Scholar
Hickey, M. P., Walterscheid, R. L., and Schubert, G. 2011. Gravity Wave Heating and Cooling of the Thermosphere: Sensible Heat Flux and Viscous Flux of Kinetic Energy. J. Geophys. Res., 116(A12), A12326.Google Scholar
Hubbard, W. B., Sicardy, B., Miles, R., et al. 1993. The Occultation of 28 SGR by Titan. Astron. Astrophys., 269(Mar.), 541–563.Google Scholar
Kasprzak, W. T., Hedin, A. E., Mayr, H. G., and Niemann, H. B. 1988. Wavelike Perturbations Observed in the Neutral Thermosphere of Venus. J. Geophys. Res. (ISSN 0148-0227), 93(Oct.), 11237.Google Scholar
Koskinen, T. T., Yelle, R. V, Snowden, D. S., et al. 2011. The Mesosphere and Lower Thermosphere of Titan Revealed by Cassini/UVIS Stellar Occultations. Icarus, 216(Dec.), 507–534. doi:10.1016/j.icarus.2011.09.022.Google Scholar
Kostiuk, T., Hewagama, T., Fast, K. E., et al. 2010. High Spectral Resolution Infrared Studies of Titan Winds, Temperature, and Composition. Planet. Space Sci. Sept., 1-9.Google Scholar
Lavvas, P., Yelle, R. V, and Vuitton, V 2009. The Detached Haze Layer in Titan's Mesosphere. Icarus, 201(June), 626–633. doi:10.1016/j.icarus.2009.01.004.Google Scholar
Lellouch, E., Hunten, D. M., Kockarts, G., and Coustenis, A. 1990. Titan's Thermosphere Profile. Icarus, 83 (Feb.), 308–324. doi:10.1016/0019-1035(90)90070-P.Google Scholar
Liang, M., and Yung, Y. 2007. Photolytically Generated Aerosols in the Mesosphere and Thermosphere of Titan. Astrophys. J., 661, L199–L202.Google Scholar
Magee, B. A., Waite, J. H., Mandt, K. E., et al. 2009. INMS-Derived Composition of Titan's Upper Atmosphere: Analysis Methods and Model Comparison. Planet. Space Sci., 57(14–15), 1895–1916.Google Scholar
Matcheva, K. I., and Strobel, D. F. 1999. Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction. Icarus, 140(July), 328.Google Scholar
Mayr, H. G., Harris, I., Kasprzak, W. T., et al. 1988. Gravity Waves in the Upper Atmosphere of Venus. J. Geophys. Res. (ISSN 0148-0227), 93(Oct.), 11247.Google Scholar
Michael, M., and Johnson, R. E.. 2005. Energy Deposition of Pickup Ions and Heating of Titan's Atmosphere. Planet. Space Sci., 53(1), 1510–1514.Google Scholar
Miyoshi, Y., Forbes, J. M., and Moudden, Y. 2011. A New Perspective on Gravity Waves in the Martian Atmosphere: Sources and Features. J. Geophys. Res., 116(E9), E09009.Google Scholar
Moreno, R., Marten, A., and Hidayat, T. 2005. Interferometric Measurements of Zonal Winds on Titan. Astron. Astrophys., 437(July), 319–328. doi:10.1051/0004-6361:20042117.Google Scholar
Müller-Wodarg, I. C. F., and Yelle, R. V 2002. The Effect of Dynamics on the Composition of Titan's Upper Atmosphere. Geophys. Res. Lett., 29(Dec.), 54–1.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Mendillo, M., et al. 2000. The Thermosphere of Titan Simulated by a Global Three-Dimensional Time-Dependent Model. J. Geophys. Res., 105, 20833–20856. doi:10.1029/2000JA000053.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Mendillo, M. J., and Aylward, A. D. 2003. On the Global Distribution of Neutral Gases in Titan's Upper Atmosphere and Its Effect on the Thermal Structure. J. Geophys. Res., 108(A12), 18–1. doi:10.1029/2003JA010054.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Borggren, N., and Waite, J. H. 2006. Waves and Horizontal Structures in Titan's Thermosphere. J. Geophys. Res., 111(A10), 12315. doi:10.1029/2006JA011961.Google Scholar
Müller-Wodarg, I. C. F., Yelle, R. V, Cui, J., and Waite, J. H. 2008. Horizontal Structures and Dynamics of Titan's Thermosphere. J. Geophys. Res., 113(E12), 10005. doi:10.1029/2007JE003033.Google Scholar
Parish, H., Schubert, G., and Hickey, M. 2009. Propagation of Tropospheric Gravity Waves into the Upper Atmosphere of Mars. Icarus.Google Scholar
Porco, C. C., Baker, E., Barbara, J., et al. 2005. Imaging of Titan from the Cassini Spacecraft. Nature, 434(Mar.), 159–168. doi:10.1038/nature03436.Google Scholar
Rishbeth, H., Yelle, R. V, and Mendillo, M. 2000. Dynamics of Titan's Thermosphere. Planet. Space Sci., 48(Jan.), 51.Google Scholar
Roman, M. T., West, R. A., Banfield, D. J., et al. 2009. Determining a Tilt in Titan's North-South Albedo Asymmetry from Cassini Images. Icarus, 203(1), 242–249.Google Scholar
Rymer, A. M., Smith, H. T., Wellbrock, A., et al. 2009. Discrete Classification and Electron Energy Spectra of Titan's Varied Magnetospheric Environment. Geophys. Res. Lett., 36(Aug.), 15109.Google Scholar
Shah, M. B., Latimer, C. J., Montenegro, E. C., et al. 2009. The Implantation and Interactions of O+ in Titan's Atmosphere: Laboratory Measurements of Collision-induced Dissociation of N2 and Modeling of Positive Ion Formation. Astrophys. J., 703(Oct.), 1947.Google Scholar
Sicardy, B., Ferri, F., Roques, F., et al. 1999. The Structure of Titan's Stratosphere from the 28 Sgr Occultation. Icarus, 142(Dec.), 357–390. doi:10.1006/icar.1999.6219.Google Scholar
Sicardy, B., Colas, F., Widemann, T., et al. 2006. The Two Titan Stellar Occultations of 14 November 2003. J. Geophys. Res., 111(E10), 11. doi:10.1029/2005JE002624.Google Scholar
Sillanpää, I., Kallio, E., Jarvinen, R., and Janhunen, P. 2007. Oxygen Ions at Titan's Exobase in a Voyager 1-Type Interaction from a Hybrid Simulation. J. Geophys. Res., 112(A12), A12205.Google Scholar
Simon, S., Wennmacher, A., Neubauer, F. M., et al. 2010. Titan's Highly Dynamic Magnetic Environment: A Systematic Survey of Cassini Magnetometer Observations from Fly Bys TA-T62. Planet. Space Sci., 58(10), 1230–1251.Google Scholar
Smith, C.G.A., and Aylward, A.D. 2009. Coupled Rotational Dynamics of Jupiter's Thermosphere and Magnetosphere. Ann. Geophys, 27, 199–230.Google Scholar
Smith, G. R., Strobel, D. F., Broadfoot, A. L., et al. 1982. Titan's Upper Atmosphere – Composition and Temperature from the EUV Solar Occultation Results. J. Geophys. Res., 87(Mar.), 1351–1359. doi:10.1029/JA087iA03p01351.Google Scholar
Snowden, D. S., and Yelle, R. V 2013. The Thermal Structure of Titan's Upper Atmosphere, II: Energetics, Icarus, in press.
Snowden, D. S., Yelle, R. V, Galand, M., et al. 2013a. Auroral electron precipitation and flux tube erosion in Titan's upper atmosphere, Icarus, 226, 186–204, doi:10.1016/j.icarus.2013.05.021.Google Scholar
Snowden, D. S., Yelle, R. V, Cui, J., et al. 2013b. The Thermal Structure of Titan's Upper Atmosphere, I: Temperature Profiles from Cassini INMS Observations. Icarus, 226, 552–582, doi:10.1016/j.icarus.2013.06.006.Google Scholar
Strobel, D. F., Summers, M. E., and Zhu, X. 1992. Titan's Upper Atmosphere – Structure and Ultraviolet Emissions. Icarus, 100(Dec.), 512–526. doi:10.1016/0019-1035(92)90114-M.Google Scholar
Strobel, D. F. 2006. Gravitational tidal waves in Titan's upper atmosphere. Icarus, 182(May), 251.Google Scholar
Strobel, D. F.. 2008. Titan's Hydrodynamically Escaping Atmosphere. Icarus, 193(Feb.), 588.Google Scholar
Strobel, D. F.. 2012. Hydrogen and Methane in Titan's Atmosphere: Chemistry, Diffusion, Escape, and the Hunten Limiting Flux Principle. Can. J. Physics, 90(8), 795–805. doi:10.1139/p11-131.Google Scholar
Tokano, T. 2010. Westward Rotation of the Atmospheric Angular Momentum Vector of Titan by Thermal Tides. Planet. Space Sci., 58(5), 814–829.Google Scholar
Tokano, T., and Neubauer, F. M. 2002. Tidal Winds on Titan Caused by Saturn. Icarus, 158(2), 499–515.Google Scholar
Tseng, W., Ip, W., and Kopp, A. 2008. Exospheric Heating by Pickup Ions at Titan. Adv. Space Res., 42(1), 54–60.Google Scholar
Vadas, S. 2009. Generation of Large-Scale Gravity Waves and Neutral Winds in the Thermosphere from the Dissipation of Convectively Generated Gravity Waves. J. Geophys. Res., 114, A10310.Google Scholar
Vadas, S. L. 2007. Horizontal and Vertical Propagation and Dissipation of Gravity Waves in the Thermosphere from Lower Atmospheric and Thermospheric Sources. J. Geophys. Res., 112(A6), A06305.Google Scholar
Vasyliunas, V M., and Song, 2005. Meaning of Ionospheric Joule Heating. J. Geophys. Res., 110(Feb.), 02301.Google Scholar
Vervack, R. J., Sandel, B. R., and Strobel, D. F. 2004. New Perspectives on Titan's Upper Atmosphere from a Reanalysis of the Voyager 1 UVS Solar Occultations. Icarus, 170(July), 91–112. doi:10.1016/j.icarus.2004.03.005.Google Scholar
Volkov, A. N., Johnson, R. E., Tucker, O. J., and Erwin, J. T. 2011. Thermally Driven Atmospheric Escape: Transition from Hydrodynamic to Jeans Escape. Astrophys. J. Lett., 729(Mar.), L24. doi:10.1088/2041-8205/729/2/L24.Google Scholar
Waite, J. H., Niemann, H., Yelle, R. V., et al. 2005. Ion Neutral Mass Spectrometer Results from the First Flyby of Titan. Science, 308(May), 982–986. doi:10.1126/science.1110652.Google Scholar
Walterscheid, R. L. 1981. Dynamical Cooling Induced by Dissipating Internal Gravity Waves. Geophys. Res. Lett., 8(Dec.), 1235–1238. doi:10.1029/GL008i012p01235.Google Scholar
Walterscheid, R. L.. 2005. Acoustic Waves Generated by Gusty Flow over Hilly Terrain. J. Geophys. Res., 110(A10), A10307.Google Scholar
West, R. A., Balloch, J., Dumont, P., et al. 2011. The Evolution of Titan's Detached Haze Layer near Equinox in 2009. Geophys. Res. Lett., 38(Mar.), 6204. doi:10.1029/2011GL046843.Google Scholar
Westlake, J. H., Bell, J. M., Waite, J. H. Jr., et al. 2011. Titan's Thermospheric Response to Various Plasma Environments. J. Geophys. Res., 116(A), 03318.Google Scholar
Woods, T. N., Eparvier, F. G., Bailey, S. M., et al. 2005. Solar EUV Experiment (SEE): Mission Overview and First Results. J. Geophys. Res. (Space Physics), 110(A9), 1312. doi:10.1029/2004JA010765.Google Scholar
Yelle, R. V 1991. Non-LTE Models of Titan's Upper Atmosphere. Astrophys. J., 383(Dec.), 380–400. doi:10.1086/170796.Google Scholar
Yelle, R. V, and Miller, S. 2004. Jupiter: The Planet, Satellites and Magnetosphere – Google Books. Jupiter.Google Scholar
Yelle, R. V, Borggren, N., de La Haye, V, et al. 2006. The Vertical Structure of Titan's Upper Atmosphere from Cassini Ion Neutral Mass Spectrometer Measurements. Icarus, 182(June), 567–576. doi:10.1016/j.icarus.2005.10.029.Google Scholar
Yelle, R. V, Cui, J., and Müller-Wodarg, I. C. F., 2008. Methane Escape from Titan's Atmosphere. J. Geophys. Res., 113(E12), 10003. doi:10.1029/2007JE003031.Google Scholar
Yiğit, E., and Medvedev, A. S. 2009. Heating and Cooling of the Thermosphere by Internal Gravity Waves. Geophys. Res. Lett., 36(1), 14807.Google Scholar
Yung, Y. L., Allen, M., and Pinto, J. P. 1984. Photochemistry of the Atmosphere of Titan – Comparison between Model and Observations. Ap. J. Supp., 55(July), 465–506. doi:10.1086/190963.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×