Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-16T14:59:07.545Z Has data issue: false hasContentIssue false

25 - Dysarthria

from PART I - CLINICAL MANIFESTATIONS

Published online by Cambridge University Press:  17 May 2010

Edward Feldmann
Affiliation:
Brown University School of Medicine, Rhode Island Hospital, Providence, USA
Julien Bogousslavsky
Affiliation:
Université de Lausanne, Switzerland
Louis R. Caplan
Affiliation:
Harvard Medical School
Get access

Summary

Introduction

Dysarthria is a pure motor disorder of speech, occurring in 24–29% of patients with cerebral ischemia (Arboix et al., 1990; Melo et al., 1992). It is characterized by dysfunction of the structures implicated in the control, initiation and coordination of speech output: lips, tongue, jaw, and palate, which are innervated by the facial, glossopharyngeal, vagal, and hypoglossal nerves. The dysarthric patient exhibits intact cortical language mechanisms and comprehension, is able to understand perfectly what he hears and has no difficulty in reading and writing, although his speech is inarticulate and may be unintelligible.

Lesions that cause dysarthria may occur in one of several locations along the neuraxis (Schiff et al., 1983; Yorkston et al., 1988). The upper and/or lower motor neuron may be involved as well as the extrapyramidal system from the basal ganglia to the cerebellum. Each region may receive blood supply from more than one artery. The examination of the patient with dysarthria is used to identify the specific type of abnormality. It is conducted by listening to the patient's speech during ordinary conversation, after testwords, or in the attempt of rapid repetition of lingual, labial, and guttural consonants. The clinical features of the dysarthria and the associated neurological findings identify the responsible lesion. Dysarthria has also been described as an isolated symptom (Ozaki et al., 1986; Caplan et al., 1990); in such circumstances the responsible lesion is suggested by the characteristics of the dysarthria itself and by imaging studies.

Defects in articulation may be subdivided into several types: upper motor neuron or spastic (pseudobulbar), lower motor neuron (neuromuscular), cerebellar–ataxic, hypo- and hyperkinetic.

Type
Chapter
Information
Stroke Syndromes , pp. 334 - 340
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×